QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#551950 | #9248. An Easy Math Problem | ucup-team296# | AC ✓ | 4ms | 2184kb | Rust | 29.1kb | 2024-09-07 19:20:03 | 2024-10-31 22:38:46 |
Judging History
你现在查看的是最新测评结果
- [2024-10-31 22:36:43]
- hack成功,自动添加数据
- (/hack/1098)
- [2024-10-31 22:13:58]
- hack成功,自动添加数据
- (/hack/1096)
- [2024-10-31 22:00:43]
- hack成功,自动添加数据
- (/hack/1095)
- [2024-09-07 19:20:03]
- 提交
answer
//
pub mod solution {
//{"name":"uc9_g","group":"Manual","url":"","interactive":false,"timeLimit":2000,"tests":[{"input":"","output":""}],"testType":"multiNumber","input":{"type":"stdin","fileName":null,"pattern":null},"output":{"type":"stdout","fileName":null,"pattern":null},"languages":{"java":{"taskClass":"uc9_g"}}}
use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::misc::test_type::TaskType;
use crate::algo_lib::misc::test_type::TestType;
use crate::algo_lib::numbers::primes::sieve::primes;
type PreCalc = Vec<i64>;
fn solve(input: &mut Input, out: &mut Output, _test_case: usize, p: &mut PreCalc) {
let n = input.read_long();
let mut nc = n;
let mut pd = Vec::new();
for &i in p.iter() {
if i * i > nc {
break;
}
if nc % i == 0 {
let mut q = 0;
while nc % i == 0 {
nc /= i;
q += 1;
}
pd.push((i, q));
}
}
if nc > 1 {
pd.push((nc, 1));
}
let mut ans = 1i64;
for &(_, e) in pd.iter() {
ans *= 2 * e + 1;
}
// let mut rec = RecursiveFunction2::new(|f, mut d: i64, step: usize| {
// if step == pd.len() {
// dd.push(d);
// } else {
// let (p, e) = pd[step];
// for i in 0..=e {
// f.call(d, step + 1);
// if i < e {
// d *= p;
// }
// }
// }
// });
// rec.call(1, 0);
// dd.sort();
// let mut set = HashSet::new();
// for i in dd.indices() {
// for j in 0..=i {
// if n / dd[i] < dd[j] {
// break;
// }
// if (n / dd[i]) % dd[j] == 0 {
// set.insert(Rational::new(dd[j], dd[i]));
// }
// }
// }
out.print_line((ans + 1) / 2);
}
pub static TEST_TYPE: TestType = TestType::MultiNumber;
pub static TASK_TYPE: TaskType = TaskType::Classic;
pub(crate) fn run(mut input: Input, mut output: Output) -> bool {
let mut pre_calc = primes(100_000);
match TEST_TYPE {
TestType::Single => solve(&mut input, &mut output, 1, &mut pre_calc),
TestType::MultiNumber => {
let t = input.read();
for i in 1..=t {
solve(&mut input, &mut output, i, &mut pre_calc);
}
}
TestType::MultiEof => {
let mut i = 1;
while input.peek().is_some() {
solve(&mut input, &mut output, i, &mut pre_calc);
i += 1;
}
}
}
output.flush();
match TASK_TYPE {
TaskType::Classic => {
input.skip_whitespace();
input.peek().is_none()
}
TaskType::Interactive => true,
}
}
}
pub mod algo_lib {
pub mod collections {
pub mod bit_set {
use crate::algo_lib::collections::slice_ext::legacy_fill::LegacyFill;
use crate::algo_lib::numbers::num_traits::bit_ops::BitOps;
use std::ops::BitAndAssign;
use std::ops::BitOrAssign;
use std::ops::Index;
use std::ops::ShlAssign;
use std::ops::ShrAssign;
const TRUE: bool = true;
const FALSE: bool = false;
#[derive(Clone, Eq, PartialEq, Hash)]
pub struct BitSet {
data: Vec<u64>,
len: usize,
}
impl BitSet {
pub fn new(len: usize) -> Self {
let data_len = if len == 0 {
0
} else {
Self::index(len - 1) + 1
};
Self {
data: vec![0; data_len],
len,
}
}
pub fn from_slice(len: usize, set: &[usize]) -> Self {
let mut res = Self::new(len);
for &i in set {
res.set(i);
}
res
}
pub fn set(&mut self, at: usize) {
assert!(at < self.len);
self.data[Self::index(at)].set_bit(at & 63);
}
pub fn unset(&mut self, at: usize) {
assert!(at < self.len);
self.data[Self::index(at)].unset_bit(at & 63);
}
pub fn change(&mut self, at: usize, value: bool) {
if value {
self.set(at);
} else {
self.unset(at);
}
}
pub fn flip(&mut self, at: usize) {
self.change(at, !self[at]);
}
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> usize {
self.len
}
pub fn fill(&mut self, value: bool) {
// 1.43
self.data.legacy_fill(if value { std::u64::MAX } else { 0 });
if value {
self.fix_last();
}
}
pub fn is_superset(&self, other: &Self) -> bool {
assert_eq!(self.len, other.len);
for i in 0..self.data.len() {
if self.data[i] & other.data[i] != other.data[i] {
return false;
}
}
true
}
pub fn is_subset(&self, other: &Self) -> bool {
other.is_superset(self)
}
pub fn iter(&self) -> impl Iterator<Item = usize> + '_ {
self.into_iter()
}
fn index(at: usize) -> usize {
at >> 6
}
pub fn count_ones(&self) -> usize {
self.data.iter().map(|x| x.count_ones() as usize).sum()
}
fn fix_last(&mut self) {
if self.len & 63 != 0 {
let mask = (1 << (self.len & 63)) - 1;
*self.data.last_mut().unwrap() &= mask;
}
}
}
pub struct BitSetIter<'s> {
at: usize,
inside: usize,
set: &'s BitSet,
}
impl<'s> Iterator for BitSetIter<'s> {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
while self.at < self.set.data.len()
&& (self.inside == 64 || (self.set.data[self.at] >> self.inside) == 0)
{
self.at += 1;
self.inside = 0;
}
if self.at == self.set.data.len() {
None
} else {
while !self.set.data[self.at].is_set(self.inside) {
self.inside += 1;
}
let res = self.at * 64 + self.inside;
if res < self.set.len {
self.inside += 1;
Some(res)
} else {
None
}
}
}
}
impl<'a> IntoIterator for &'a BitSet {
type Item = usize;
type IntoIter = BitSetIter<'a>;
fn into_iter(self) -> Self::IntoIter {
BitSetIter {
at: 0,
inside: 0,
set: self,
}
}
}
impl BitOrAssign<&BitSet> for BitSet {
fn bitor_assign(&mut self, rhs: &BitSet) {
assert_eq!(self.len, rhs.len);
for (i, &j) in self.data.iter_mut().zip(rhs.data.iter()) {
*i |= j;
}
}
}
impl BitAndAssign<&BitSet> for BitSet {
fn bitand_assign(&mut self, rhs: &BitSet) {
assert_eq!(self.len, rhs.len);
for (i, &j) in self.data.iter_mut().zip(rhs.data.iter()) {
*i &= j;
}
}
}
impl ShlAssign<usize> for BitSet {
fn shl_assign(&mut self, rhs: usize) {
if rhs == 0 {
return;
}
let small_shift = rhs & 63;
if small_shift != 0 {
let mut carry = 0;
for i in 0..self.data.len() {
let new_carry = self.data[i] >> (64 - small_shift);
self.data[i] <<= small_shift;
self.data[i] |= carry;
carry = new_carry;
}
}
let big_shift = rhs >> 6;
if big_shift != 0 {
self.data.rotate_right(big_shift);
self.data[..big_shift].fill(0);
}
self.fix_last();
}
}
impl ShrAssign<usize> for BitSet {
fn shr_assign(&mut self, rhs: usize) {
if rhs == 0 {
return;
}
let small_shift = rhs & 63;
if small_shift != 0 {
let mut carry = 0;
for i in (0..self.data.len()).rev() {
let new_carry = self.data[i] << (64 - small_shift);
self.data[i] >>= small_shift;
self.data[i] |= carry;
carry = new_carry;
}
}
let big_shift = rhs >> 6;
if big_shift != 0 {
self.data.rotate_left(big_shift);
let from = self.data.len() - big_shift;
self.data[from..].fill(0);
}
}
}
impl Index<usize> for BitSet {
type Output = bool;
fn index(&self, at: usize) -> &Self::Output {
assert!(at < self.len);
if self.data[Self::index(at)].is_set(at & 63) {
&TRUE
} else {
&FALSE
}
}
}
impl From<Vec<bool>> for BitSet {
fn from(data: Vec<bool>) -> Self {
let mut res = Self::new(data.len());
for (i, &value) in data.iter().enumerate() {
res.change(i, value);
}
res
}
}
}
pub mod iter_ext {
pub mod collect {
pub trait IterCollect<T>: Iterator<Item = T> + Sized {
fn collect_vec(self) -> Vec<T> {
self.collect()
}
}
impl<T, I: Iterator<Item = T> + Sized> IterCollect<T> for I {}
}
}
pub mod slice_ext {
pub mod legacy_fill {
// 1.50
pub trait LegacyFill<T> {
fn legacy_fill(&mut self, val: T);
}
impl<T: Clone> LegacyFill<T> for [T] {
fn legacy_fill(&mut self, val: T) {
for el in self.iter_mut() {
*el = val.clone();
}
}
}
}
}
pub mod vec_ext {
pub mod default {
pub fn default_vec<T: Default>(len: usize) -> Vec<T> {
let mut v = Vec::with_capacity(len);
for _ in 0..len {
v.push(T::default());
}
v
}
}
}
}
pub mod io {
pub mod input {
use crate::algo_lib::collections::vec_ext::default::default_vec;
use std::io::Read;
pub struct Input<'s> {
input: &'s mut dyn Read,
buf: Vec<u8>,
at: usize,
buf_read: usize,
}
macro_rules! read_impl {
($t: ty, $read_name: ident, $read_vec_name: ident) => {
pub fn $read_name(&mut self) -> $t {
self.read()
}
pub fn $read_vec_name(&mut self, len: usize) -> Vec<$t> {
self.read_vec(len)
}
};
($t: ty, $read_name: ident, $read_vec_name: ident, $read_pair_vec_name: ident) => {
read_impl!($t, $read_name, $read_vec_name);
pub fn $read_pair_vec_name(&mut self, len: usize) -> Vec<($t, $t)> {
self.read_vec(len)
}
};
}
impl<'s> Input<'s> {
const DEFAULT_BUF_SIZE: usize = 4096;
pub fn new(input: &'s mut dyn Read) -> Self {
Self {
input,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
buf_read: 0,
}
}
pub fn new_with_size(input: &'s mut dyn Read, buf_size: usize) -> Self {
Self {
input,
buf: default_vec(buf_size),
at: 0,
buf_read: 0,
}
}
pub fn get(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
self.at += 1;
if res == b'\r' {
if self.refill_buffer() && self.buf[self.at] == b'\n' {
self.at += 1;
}
return Some(b'\n');
}
Some(res)
} else {
None
}
}
pub fn peek(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
Some(if res == b'\r' { b'\n' } else { res })
} else {
None
}
}
pub fn skip_whitespace(&mut self) {
while let Some(b) = self.peek() {
if !char::from(b).is_whitespace() {
return;
}
self.get();
}
}
pub fn next_token(&mut self) -> Option<Vec<u8>> {
self.skip_whitespace();
let mut res = Vec::new();
while let Some(c) = self.get() {
if char::from(c).is_whitespace() {
break;
}
res.push(c);
}
if res.is_empty() {
None
} else {
Some(res)
}
}
//noinspection RsSelfConvention
pub fn is_exhausted(&mut self) -> bool {
self.peek().is_none()
}
//noinspection RsSelfConvention
pub fn is_empty(&mut self) -> bool {
self.skip_whitespace();
self.is_exhausted()
}
pub fn read<T: Readable>(&mut self) -> T {
T::read(self)
}
pub fn read_vec<T: Readable>(&mut self, size: usize) -> Vec<T> {
let mut res = Vec::with_capacity(size);
for _ in 0..size {
res.push(self.read());
}
res
}
pub fn read_char(&mut self) -> char {
self.skip_whitespace();
self.get().unwrap().into()
}
read_impl!(u32, read_unsigned, read_unsigned_vec);
read_impl!(u64, read_u64, read_u64_vec);
read_impl!(usize, read_size, read_size_vec, read_size_pair_vec);
read_impl!(i32, read_int, read_int_vec, read_int_pair_vec);
read_impl!(i64, read_long, read_long_vec, read_long_pair_vec);
read_impl!(i128, read_i128, read_i128_vec);
fn refill_buffer(&mut self) -> bool {
if self.at == self.buf_read {
self.at = 0;
self.buf_read = self.input.read(&mut self.buf).unwrap();
self.buf_read != 0
} else {
true
}
}
}
pub trait Readable {
fn read(input: &mut Input) -> Self;
}
impl Readable for char {
fn read(input: &mut Input) -> Self {
input.read_char()
}
}
impl<T: Readable> Readable for Vec<T> {
fn read(input: &mut Input) -> Self {
let size = input.read();
input.read_vec(size)
}
}
macro_rules! read_integer {
($($t:ident)+) => {$(
impl Readable for $t {
fn read(input: &mut Input) -> Self {
input.skip_whitespace();
let mut c = input.get().unwrap();
let sgn = match c {
b'-' => {
c = input.get().unwrap();
true
}
b'+' => {
c = input.get().unwrap();
false
}
_ => false,
};
let mut res = 0;
loop {
assert!(c.is_ascii_digit());
res *= 10;
let d = (c - b'0') as $t;
if sgn {
res -= d;
} else {
res += d;
}
match input.get() {
None => break,
Some(ch) => {
if ch.is_ascii_whitespace() {
break;
} else {
c = ch;
}
}
}
}
res
}
}
)+};
}
read_integer!(i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize);
macro_rules! tuple_readable {
($($name:ident)+) => {
impl<$($name: Readable), +> Readable for ($($name,)+) {
fn read(input: &mut Input) -> Self {
($($name::read(input),)+)
}
}
}
}
tuple_readable! {T}
tuple_readable! {T U}
tuple_readable! {T U V}
tuple_readable! {T U V X}
tuple_readable! {T U V X Y}
tuple_readable! {T U V X Y Z}
tuple_readable! {T U V X Y Z A}
tuple_readable! {T U V X Y Z A B}
tuple_readable! {T U V X Y Z A B C}
tuple_readable! {T U V X Y Z A B C D}
tuple_readable! {T U V X Y Z A B C D E}
tuple_readable! {T U V X Y Z A B C D E F}
impl Read for Input<'_> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
if self.at == self.buf_read {
self.input.read(buf)
} else {
let mut i = 0;
while i < buf.len() && self.at < self.buf_read {
buf[i] = self.buf[self.at];
i += 1;
self.at += 1;
}
Ok(i)
}
}
}
}
pub mod output {
use crate::algo_lib::collections::vec_ext::default::default_vec;
use std::cmp::Reverse;
use std::io::stderr;
use std::io::Stderr;
use std::io::Write;
#[derive(Copy, Clone)]
pub enum BoolOutput {
YesNo,
YesNoCaps,
PossibleImpossible,
Custom(&'static str, &'static str),
}
impl BoolOutput {
pub fn output(&self, output: &mut Output, val: bool) {
(if val { self.yes() } else { self.no() }).write(output);
}
fn yes(&self) -> &str {
match self {
BoolOutput::YesNo => "Yes",
BoolOutput::YesNoCaps => "YES",
BoolOutput::PossibleImpossible => "Possible",
BoolOutput::Custom(yes, _) => yes,
}
}
fn no(&self) -> &str {
match self {
BoolOutput::YesNo => "No",
BoolOutput::YesNoCaps => "NO",
BoolOutput::PossibleImpossible => "Impossible",
BoolOutput::Custom(_, no) => no,
}
}
}
pub struct Output<'s> {
output: &'s mut dyn Write,
buf: Vec<u8>,
at: usize,
auto_flush: bool,
bool_output: BoolOutput,
}
impl<'s> Output<'s> {
const DEFAULT_BUF_SIZE: usize = 4096;
pub fn new(output: &'s mut dyn Write) -> Self {
Self {
output,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
auto_flush: false,
bool_output: BoolOutput::YesNoCaps,
}
}
pub fn new_with_auto_flush(output: &'s mut dyn Write) -> Self {
Self {
output,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
auto_flush: true,
bool_output: BoolOutput::YesNoCaps,
}
}
pub fn flush(&mut self) {
if self.at != 0 {
self.output.write_all(&self.buf[..self.at]).unwrap();
self.output.flush().unwrap();
self.at = 0;
}
}
pub fn print<T: Writable>(&mut self, s: T) {
s.write(self);
self.maybe_flush();
}
pub fn print_line<T: Writable>(&mut self, s: T) {
self.print(s);
self.put(b'\n');
self.maybe_flush();
}
pub fn put(&mut self, b: u8) {
self.buf[self.at] = b;
self.at += 1;
if self.at == self.buf.len() {
self.flush();
}
}
pub fn maybe_flush(&mut self) {
if self.auto_flush {
self.flush();
}
}
pub fn print_per_line<T: Writable>(&mut self, arg: &[T]) {
for i in arg {
i.write(self);
self.put(b'\n');
}
}
pub fn print_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
let mut first = true;
for e in iter {
if first {
first = false;
} else {
self.put(b' ');
}
e.write(self);
}
}
pub fn set_bool_output(&mut self, bool_output: BoolOutput) {
self.bool_output = bool_output;
}
}
impl Write for Output<'_> {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
let mut start = 0usize;
let mut rem = buf.len();
while rem > 0 {
let len = (self.buf.len() - self.at).min(rem);
self.buf[self.at..self.at + len].copy_from_slice(&buf[start..start + len]);
self.at += len;
if self.at == self.buf.len() {
self.flush();
}
start += len;
rem -= len;
}
self.maybe_flush();
Ok(buf.len())
}
fn flush(&mut self) -> std::io::Result<()> {
self.flush();
Ok(())
}
}
pub trait Writable {
fn write(&self, output: &mut Output);
}
impl Writable for &str {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for String {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for char {
fn write(&self, output: &mut Output) {
output.put(*self as u8);
}
}
impl<T: Writable> Writable for [T] {
fn write(&self, output: &mut Output) {
output.print_iter(self.iter());
}
}
impl<T: Writable, const N: usize> Writable for [T; N] {
fn write(&self, output: &mut Output) {
output.print_iter(self.iter());
}
}
impl<T: Writable + ?Sized> Writable for &T {
fn write(&self, output: &mut Output) {
T::write(self, output)
}
}
impl<T: Writable> Writable for Vec<T> {
fn write(&self, output: &mut Output) {
self.as_slice().write(output);
}
}
impl Writable for () {
fn write(&self, _output: &mut Output) {}
}
macro_rules! write_to_string {
($($t:ident)+) => {$(
impl Writable for $t {
fn write(&self, output: &mut Output) {
self.to_string().write(output);
}
}
)+};
}
write_to_string!(u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize);
macro_rules! tuple_writable {
($name0:ident $($name:ident: $id:tt )*) => {
impl<$name0: Writable, $($name: Writable,)*> Writable for ($name0, $($name,)*) {
fn write(&self, out: &mut Output) {
self.0.write(out);
$(
out.put(b' ');
self.$id.write(out);
)*
}
}
}
}
tuple_writable! {T}
tuple_writable! {T U:1}
tuple_writable! {T U:1 V:2}
tuple_writable! {T U:1 V:2 X:3}
tuple_writable! {T U:1 V:2 X:3 Y:4}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6 B:7}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6 B:7 C:8}
impl<T: Writable> Writable for Option<T> {
fn write(&self, output: &mut Output) {
match self {
None => (-1).write(output),
Some(t) => t.write(output),
}
}
}
impl Writable for bool {
fn write(&self, output: &mut Output) {
let bool_output = output.bool_output;
bool_output.output(output, *self)
}
}
impl<T: Writable> Writable for Reverse<T> {
fn write(&self, output: &mut Output) {
self.0.write(output);
}
}
static mut ERR: Option<Stderr> = None;
pub fn err() -> Output<'static> {
unsafe {
if ERR.is_none() {
ERR = Some(stderr());
}
Output::new_with_auto_flush(ERR.as_mut().unwrap())
}
}
}
}
pub mod misc {
pub mod test_type {
pub enum TestType {
Single,
MultiNumber,
MultiEof,
}
pub enum TaskType {
Classic,
Interactive,
}
}
}
pub mod numbers {
pub mod num_traits {
pub mod algebra {
use crate::algo_lib::numbers::num_traits::invertible::Invertible;
use std::ops::Add;
use std::ops::AddAssign;
use std::ops::Div;
use std::ops::DivAssign;
use std::ops::Mul;
use std::ops::MulAssign;
use std::ops::Neg;
use std::ops::Rem;
use std::ops::RemAssign;
use std::ops::Sub;
use std::ops::SubAssign;
pub trait Zero {
fn zero() -> Self;
}
pub trait One {
fn one() -> Self;
}
pub trait AdditionMonoid: Add<Output = Self> + AddAssign + Zero + Eq + Sized {}
impl<T: Add<Output = Self> + AddAssign + Zero + Eq> AdditionMonoid for T {}
pub trait AdditionMonoidWithSub: AdditionMonoid + Sub<Output = Self> + SubAssign {}
impl<T: AdditionMonoid + Sub<Output = Self> + SubAssign> AdditionMonoidWithSub for T {}
pub trait AdditionGroup: AdditionMonoidWithSub + Neg<Output = Self> {}
impl<T: AdditionMonoidWithSub + Neg<Output = Self>> AdditionGroup for T {}
pub trait MultiplicationMonoid: Mul<Output = Self> + MulAssign + One + Eq + Sized {}
impl<T: Mul<Output = Self> + MulAssign + One + Eq> MultiplicationMonoid for T {}
pub trait IntegerMultiplicationMonoid:
MultiplicationMonoid + Div<Output = Self> + Rem<Output = Self> + DivAssign + RemAssign
{
}
impl<T: MultiplicationMonoid + Div<Output = Self> + Rem<Output = Self> + DivAssign + RemAssign>
IntegerMultiplicationMonoid for T
{
}
pub trait MultiplicationGroup:
MultiplicationMonoid + Div<Output = Self> + DivAssign + Invertible<Output = Self>
{
}
impl<T: MultiplicationMonoid + Div<Output = Self> + DivAssign + Invertible<Output = Self>>
MultiplicationGroup for T
{
}
pub trait SemiRing: AdditionMonoid + MultiplicationMonoid {}
impl<T: AdditionMonoid + MultiplicationMonoid> SemiRing for T {}
pub trait SemiRingWithSub: AdditionMonoidWithSub + SemiRing {}
impl<T: AdditionMonoidWithSub + SemiRing> SemiRingWithSub for T {}
pub trait Ring: SemiRing + AdditionGroup {}
impl<T: SemiRing + AdditionGroup> Ring for T {}
pub trait IntegerSemiRing: SemiRing + IntegerMultiplicationMonoid {}
impl<T: SemiRing + IntegerMultiplicationMonoid> IntegerSemiRing for T {}
pub trait IntegerSemiRingWithSub: SemiRingWithSub + IntegerSemiRing {}
impl<T: SemiRingWithSub + IntegerSemiRing> IntegerSemiRingWithSub for T {}
pub trait IntegerRing: IntegerSemiRing + Ring {}
impl<T: IntegerSemiRing + Ring> IntegerRing for T {}
pub trait Field: Ring + MultiplicationGroup {}
impl<T: Ring + MultiplicationGroup> Field for T {}
macro_rules! zero_one_integer_impl {
($($t: ident)+) => {$(
impl Zero for $t {
fn zero() -> Self {
0
}
}
impl One for $t {
fn one() -> Self {
1
}
}
)+};
}
zero_one_integer_impl!(i128 i64 i32 i16 i8 isize u128 u64 u32 u16 u8 usize);
}
pub mod as_index {
pub trait AsIndex {
fn from_index(idx: usize) -> Self;
fn to_index(self) -> usize;
}
macro_rules! from_index_impl {
($($t: ident)+) => {$(
impl AsIndex for $t {
fn from_index(idx: usize) -> Self {
idx as $t
}
fn to_index(self) -> usize {
self as usize
}
}
)+};
}
from_index_impl!(i128 i64 i32 i16 i8 isize u128 u64 u32 u16 u8 usize);
}
pub mod bit_ops {
use crate::algo_lib::numbers::num_traits::algebra::One;
use crate::algo_lib::numbers::num_traits::algebra::Zero;
use std::ops::BitAnd;
use std::ops::BitAndAssign;
use std::ops::BitOr;
use std::ops::BitOrAssign;
use std::ops::BitXor;
use std::ops::BitXorAssign;
use std::ops::Not;
use std::ops::RangeInclusive;
use std::ops::Shl;
use std::ops::ShlAssign;
use std::ops::Shr;
use std::ops::ShrAssign;
pub trait BitOps:
Copy
+ BitAnd<Output = Self>
+ BitAndAssign
+ BitOr<Output = Self>
+ BitOrAssign
+ BitXor<Output = Self>
+ BitXorAssign
+ Not<Output = Self>
+ Shl<usize, Output = Self>
+ ShlAssign<usize>
+ Shr<usize, Output = Self>
+ ShrAssign<usize>
+ Zero
+ One
+ PartialEq
{
fn bit(at: usize) -> Self {
Self::one() << at
}
fn is_set(&self, at: usize) -> bool {
(*self >> at & Self::one()) == Self::one()
}
fn set_bit(&mut self, at: usize) {
*self |= Self::bit(at)
}
fn unset_bit(&mut self, at: usize) {
*self &= !Self::bit(at)
}
#[must_use]
fn with_bit(mut self, at: usize) -> Self {
self.set_bit(at);
self
}
#[must_use]
fn without_bit(mut self, at: usize) -> Self {
self.unset_bit(at);
self
}
fn flip_bit(&mut self, at: usize) {
*self ^= Self::bit(at)
}
fn all_bits(n: usize) -> Self {
let mut res = Self::zero();
for i in 0..n {
res.set_bit(i);
}
res
}
fn iter_all(n: usize) -> RangeInclusive<Self> {
Self::zero()..=Self::all_bits(n)
}
}
impl<
T: Copy
+ BitAnd<Output = Self>
+ BitAndAssign
+ BitOr<Output = Self>
+ BitOrAssign
+ BitXor<Output = Self>
+ BitXorAssign
+ Not<Output = Self>
+ Shl<usize, Output = Self>
+ ShlAssign<usize>
+ Shr<usize, Output = Self>
+ ShrAssign<usize>
+ One
+ Zero
+ PartialEq,
> BitOps for T
{
}
pub trait Bits: BitOps {
fn bits() -> u32;
}
macro_rules! bits_integer_impl {
($($t: ident $bits: expr),+) => {$(
impl Bits for $t {
fn bits() -> u32 {
$bits
}
}
)+};
}
bits_integer_impl!(i128 128, i64 64, i32 32, i16 16, i8 8, isize 64, u128 128, u64 64, u32 32, u16 16, u8 8, usize 64);
}
pub mod invertible {
pub trait Invertible {
type Output;
fn inv(&self) -> Option<Self::Output>;
}
}
}
pub mod primes {
pub mod sieve {
use crate::algo_lib::collections::bit_set::BitSet;
use crate::algo_lib::collections::iter_ext::collect::IterCollect;
use crate::algo_lib::numbers::num_traits::as_index::AsIndex;
pub fn primality_table(n: usize) -> BitSet {
let mut res = BitSet::new(n);
res.fill(true);
if n > 0 {
res.unset(0);
}
if n > 1 {
res.unset(1);
}
let mut i = 2;
while i * i < n {
if res[i] {
for j in ((i * i)..n).step_by(i) {
res.unset(j);
}
}
i += 1;
}
res
}
pub fn primes<T: AsIndex>(n: usize) -> Vec<T> {
primality_table(n)
.into_iter()
.map(|i| T::from_index(i))
.collect_vec()
}
pub fn divisor_table<T: AsIndex + PartialEq>(n: usize) -> Vec<T> {
let mut res = (0..n).map(|i| T::from_index(i)).collect_vec();
let mut i = 2;
while i * i < n {
if res[i] == T::from_index(i) {
for j in ((i * i)..n).step_by(i) {
res[j] = T::from_index(i);
}
}
i += 1;
}
res
}
}
}
}
}
fn main() {
let mut sin = std::io::stdin();
let input = algo_lib::io::input::Input::new(&mut sin);
let mut stdout = std::io::stdout();
let output = algo_lib::io::output::Output::new(&mut stdout);
solution::run(input, output);
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 2184kb
input:
10 1 2 3 4 5 6 7 8 9 10
output:
1 2 2 3 2 5 2 4 3 5
result:
ok 10 lines
Test #2:
score: 0
Accepted
time: 0ms
memory: 2152kb
input:
2000 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 6469693230 646969323...
output:
29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 29525 ...
result:
ok 2000 lines
Test #3:
score: 0
Accepted
time: 4ms
memory: 2148kb
input:
2000 1763047095 79735483 1016286871 2864801397 2327774116 2668010360 3469893354 3634459021 1613699068 781737219 574741575 2763134701 1458502604 1822260248 2281150332 2924219311 2493931196 3735904708 158802001 2006921221 729928782 1974841034 727412600 2873393292 1291087179 2741607663 1893408215 29827...
output:
14 5 2 5 23 95 68 14 8 68 203 14 23 32 38 41 8 8 14 2 608 41 158 338 23 41 14 5 14 41 14 203 41 14 17 446 5 53 59 878 2 14 365 203 14 203 2 122 32 95 41 41 5 23 14 41 5 5 14 122 23 203 608 23 41 122 2 14 95 2 68 41 203 14 230 41 68 23 50 14 32 14 8 5 5 5 68 68 122 293 473 5 41 41 14 2 14 14 5 2 122 ...
result:
ok 2000 lines
Extra Test:
score: 0
Extra Test Passed