QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#551306 | #9242. An Easy Geometry Problem | ucup-team133# | WA | 38ms | 4132kb | C++23 | 11.7kb | 2024-09-07 16:23:42 | 2024-09-07 16:23:43 |
Judging History
answer
#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif
template <class T> std::istream& operator>>(std::istream& is, std::vector<T>& v) {
for (auto& e : v) {
is >> e;
}
return is;
}
template <class T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {
for (std::string_view sep = ""; const auto& e : v) {
os << std::exchange(sep, " ") << e;
}
return os;
}
template <class T, class U = T> bool chmin(T& x, U&& y) {
return y < x and (x = std::forward<U>(y), true);
}
template <class T, class U = T> bool chmax(T& x, U&& y) {
return x < y and (x = std::forward<U>(y), true);
}
template <class T> void mkuni(std::vector<T>& v) {
std::ranges::sort(v);
auto result = std::ranges::unique(v);
v.erase(result.begin(), result.end());
}
template <class T> int lwb(const std::vector<T>& v, const T& x) {
return std::distance(v.begin(), std::ranges::lower_bound(v, x));
}
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
constexpr int bsf_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
namespace atcoder {
template <class S,
S (*op)(S, S),
S (*e)(),
class F,
S (*mapping)(F, S),
F (*composition)(F, F),
F (*id)()>
struct lazy_segtree {
public:
lazy_segtree() : lazy_segtree(0) {}
explicit lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
explicit lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)> int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G> int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)> int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G> int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
std::vector<F> lz;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
} // namespace atcoder
namespace hash_impl {
static constexpr unsigned long long mod = (1ULL << 61) - 1;
struct modint {
modint() : _v(0) {}
modint(unsigned long long v) {
v = (v >> 61) + (v & mod);
if (v >= mod) v -= mod;
_v = v;
}
unsigned long long val() const { return _v; }
modint& operator+=(const modint& rhs) {
_v += rhs._v;
if (_v >= mod) _v -= mod;
return *this;
}
modint& operator-=(const modint& rhs) {
if (_v < rhs._v) _v += mod;
_v -= rhs._v;
return *this;
}
modint& operator*=(const modint& rhs) {
__uint128_t t = __uint128_t(_v) * rhs._v;
t = (t >> 61) + (t & mod);
if (t >= mod) t -= mod;
_v = t;
return *this;
}
modint& operator/=(const modint& rhs) { return *this = *this * rhs.inv(); }
modint operator-() const { return modint() - *this; }
modint pow(long long n) const {
assert(0 <= n);
modint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
modint inv() const { return pow(mod - 2); }
friend modint operator+(const modint& lhs, const modint& rhs) { return modint(lhs) += rhs; }
friend modint operator-(const modint& lhs, const modint& rhs) { return modint(lhs) -= rhs; }
friend modint operator*(const modint& lhs, const modint& rhs) { return modint(lhs) *= rhs; }
friend modint operator/(const modint& lhs, const modint& rhs) { return modint(lhs) /= rhs; }
friend bool operator==(const modint& lhs, const modint& rhs) { return lhs._v == rhs._v; }
friend bool operator!=(const modint& lhs, const modint& rhs) { return lhs._v != rhs._v; }
friend std::ostream& operator<<(std::ostream& os, const modint& rhs) { os << rhs._v; }
private:
unsigned long long _v;
};
uint64_t generate_base() {
std::mt19937_64 mt(std::chrono::steady_clock::now().time_since_epoch().count());
std::uniform_int_distribution<uint64_t> rand(2, mod - 1);
return rand(mt);
}
modint base(generate_base());
std::vector<modint> power{1};
modint get_pow(int n) {
if (n < int(power.size())) return power[n];
int m = power.size();
power.resize(n + 1);
for (int i = m; i <= n; i++) power[i] = power[i - 1] * base;
return power[n];
}
}; // namespace hash_impl
struct Hash {
using mint = hash_impl::modint;
mint x;
int len;
Hash() : x(0), len(0) {}
Hash(mint x) : x(x), len(1) {}
Hash(mint x, int len) : x(x), len(len) {}
Hash& operator+=(const Hash& rhs) {
x = x * hash_impl::get_pow(rhs.len) + rhs.x;
len += rhs.len;
return *this;
}
Hash operator+(const Hash& rhs) const { return Hash(*this) += rhs; }
bool operator==(const Hash& rhs) const { return x == rhs.x and len == rhs.len; }
};
struct ReversibleHash {
using mint = hash_impl::modint;
mint x, rx;
int len;
ReversibleHash() : x(0), rx(0), len(0) {}
ReversibleHash(mint x) : x(x), rx(x), len(1) {}
ReversibleHash(mint x, mint rx, int len) : x(x), rx(rx), len(len) {}
ReversibleHash rev() const { return ReversibleHash(rx, x, len); }
ReversibleHash operator+=(const ReversibleHash& rhs) {
x = x * hash_impl::get_pow(rhs.len) + rhs.x;
rx = rx + rhs.rx * hash_impl::get_pow(len);
len += rhs.len;
return *this;
}
ReversibleHash operator+(const ReversibleHash& rhs) const { return ReversibleHash(*this) += rhs; }
bool operator==(const ReversibleHash& rhs) const { return x == rhs.x and rx == rhs.rx and len == rhs.len; }
};
using ll = long long;
using namespace std;
namespace hash_impl {
std::vector<modint> power_sum{0};
modint get_pow_sum(int n) {
if (n < int(power_sum.size())) return power_sum[n];
get_pow(n - 1);
int m = power_sum.size();
power_sum.resize(n + 1);
for (int i = m; i <= n; i++) power_sum[i] = power_sum[i - 1] + power[i - 1];
return power_sum[n];
}
} // namespace hash_impl
using mint = hash_impl::modint;
using S = ReversibleHash;
S op(S l, S r) { return l + r; }
S e() { return S(); }
S mapping(int l, S r) {
mint add = hash_impl::get_pow_sum(r.len) * l;
return S(r.x + add, r.rx + add, r.len);
}
int composition(int l, int r) { return l + r; }
int id() { return 0; }
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
int n, q, k, b;
cin >> n >> q >> k >> b;
vector<int> A(n);
cin >> A;
vector<S> init;
for (int i = 0; i < n; i++) init.emplace_back(A[i]);
atcoder::lazy_segtree<S, op, e, int, mapping, composition, id> seg(init);
auto update = [&](int l, int r, int v) -> void { seg.apply(l, r, v); };
vector<S> hashs{e()};
for (int i = 0; i < n; i++) hashs.emplace_back(hashs.back() + S((i + 1) * k + b));
auto query = [&](int i) -> int {
int lb = 0, ub = min(i, n - 1 - i) + 1;
while (ub - lb > 1) {
int mid = (lb + ub) >> 1;
auto R = seg.prod(i + 1, i + mid + 1).x;
auto L = seg.prod(i - mid, i).rx;
(R - L == hashs[mid].x ? lb : ub) = mid;
}
return lb;
};
for (; q--;) {
int type;
cin >> type;
if (type == 1) {
int l, r, v;
cin >> l >> r >> v;
update(--l, r, v);
} else {
int i;
cin >> i;
cout << query(--i) << "\n";
}
}
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 0ms
memory: 3540kb
input:
6 6 6 2 1 5 9 10 15 18 2 2 1 3 3 -3 2 2 1 3 4 3 2 3 2 4
output:
1 0 2 0
result:
ok 4 number(s): "1 0 2 0"
Test #2:
score: -100
Wrong Answer
time: 38ms
memory: 4132kb
input:
5000 5000 2 0 -329 -328 -327 -326 -325 -324 -323 -322 -321 -320 -319 -318 -317 -316 -315 -314 -313 -312 -311 -310 -309 -308 -307 -306 -305 -304 -303 -302 -301 -300 -299 -298 -297 -296 -295 -294 -293 -292 -291 -290 -289 -288 -287 -286 -285 -284 -283 -282 -281 -280 -279 -278 -277 -276 -275 -274 -273 -...
output:
2 142 73 29 61 154 139 48 17 99 6 5 53 93 3 91 65 29 33 140 21 24 17 21 165 12 16 1 33 7 18 96 7 40 39 13 7 46 43 16 1 72 33 16 22 5 6 24 27 1 35 107 43 34 3 27 14 21 44 56 96 36 2 27 22 30 32 6 5 96 27 37 12 58 2 21 154 17 110 57 3 7 33 15 24 94 68 25 1 8 10 4 10 2 25 39 27 33 164 11 19 181 11 37 2...
result:
wrong answer 2nd numbers differ - expected: '304', found: '142'