QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#550501#9248. An Easy Math Problemucup-team133#TL 0ms3604kbC++234.9kb2024-09-07 13:13:362024-09-07 13:13:37

Judging History

This is the latest submission verdict.

  • [2024-10-31 22:36:43]
  • hack成功,自动添加数据
  • (/hack/1098)
  • [2024-10-31 22:13:58]
  • hack成功,自动添加数据
  • (/hack/1096)
  • [2024-10-31 22:00:43]
  • hack成功,自动添加数据
  • (/hack/1095)
  • [2024-09-07 13:13:37]
  • Judged
  • Verdict: TL
  • Time: 0ms
  • Memory: 3604kb
  • [2024-09-07 13:13:36]
  • Submitted

answer

#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif

template <class T> std::istream& operator>>(std::istream& is, std::vector<T>& v) {
    for (auto& e : v) {
        is >> e;
    }
    return is;
}

template <class T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {
    for (std::string_view sep = ""; const auto& e : v) {
        os << std::exchange(sep, " ") << e;
    }
    return os;
}

template <class T, class U = T> bool chmin(T& x, U&& y) {
    return y < x and (x = std::forward<U>(y), true);
}

template <class T, class U = T> bool chmax(T& x, U&& y) {
    return x < y and (x = std::forward<U>(y), true);
}

template <class T> void mkuni(std::vector<T>& v) {
    std::ranges::sort(v);
    auto result = std::ranges::unique(v);
    v.erase(result.begin(), result.end());
}

template <class T> int lwb(const std::vector<T>& v, const T& x) {
    return std::distance(v.begin(), std::ranges::lower_bound(v, x));
}

namespace elementary_math {

template <typename T> std::vector<T> divisor(T n) {
    std::vector<T> res;
    for (T i = 1; i * i <= n; i++) {
        if (n % i == 0) {
            res.emplace_back(i);
            if (i * i != n) res.emplace_back(n / i);
        }
    }
    return res;
}

template <typename T> std::vector<std::pair<T, int>> prime_factor(T n) {
    std::vector<std::pair<T, int>> res;
    for (T p = 2; p * p <= n; p++) {
        if (n % p == 0) {
            res.emplace_back(p, 0);
            while (n % p == 0) {
                res.back().second++;
                n /= p;
            }
        }
    }
    if (n > 1) res.emplace_back(n, 1);
    return res;
}

std::vector<int> osa_k(int n) {
    std::vector<int> min_factor(n + 1, 0);
    for (int i = 2; i <= n; i++) {
        if (min_factor[i]) continue;
        for (int j = i; j <= n; j += i) {
            if (!min_factor[j]) {
                min_factor[j] = i;
            }
        }
    }
    return min_factor;
}

std::vector<int> prime_factor(const std::vector<int>& min_factor, int n) {
    std::vector<int> res;
    while (n > 1) {
        res.emplace_back(min_factor[n]);
        n /= min_factor[n];
    }
    return res;
}

long long modpow(long long x, long long n, long long mod) {
    assert(0 <= n && 1 <= mod && mod < (1LL << 31));
    if (mod == 1) return 0;
    x %= mod;
    long long res = 1;
    while (n > 0) {
        if (n & 1) res = res * x % mod;
        x = x * x % mod;
        n >>= 1;
    }
    return res;
}

long long extgcd(long long a, long long b, long long& x, long long& y) {
    long long d = a;
    if (b != 0) {
        d = extgcd(b, a % b, y, x);
        y -= (a / b) * x;
    } else
        x = 1, y = 0;
    return d;
}

long long inv_mod(long long a, long long mod) {
    assert(1 <= mod);
    long long x, y;
    if (extgcd(a, mod, x, y) != 1) return -1;
    return (mod + x % mod) % mod;
}

template <typename T> T euler_phi(T n) {
    auto pf = prime_factor(n);
    T res = n;
    for (const auto& p : pf) {
        res /= p.first;
        res *= p.first - 1;
    }
    return res;
}

std::vector<int> euler_phi_table(int n) {
    std::vector<int> res(n + 1, 0);
    std::iota(res.begin(), res.end(), 0);
    for (int i = 2; i <= n; i++) {
        if (res[i] != i) continue;
        for (int j = i; j <= n; j += i) res[j] = res[j] / i * (i - 1);
    }
    return res;
}

// minimum i > 0 s.t. x^i \equiv 1 \pmod{m}
template <typename T> T order(T x, T m) {
    T n = euler_phi(m);
    auto cand = divisor(n);
    std::sort(cand.begin(), cand.end());
    for (auto& i : cand) {
        if (modpow(x, i, m) == 1) {
            return i;
        }
    }
    return -1;
}

template <typename T> std::vector<std::tuple<T, T, T>> quotient_ranges(T n) {
    std::vector<std::tuple<T, T, T>> res;
    T m = 1;
    for (; m * m <= n; m++) res.emplace_back(m, m, n / m);
    for (; m >= 1; m--) {
        T l = n / (m + 1) + 1, r = n / m;
        if (l <= r and std::get<1>(res.back()) < l) res.emplace_back(l, r, n / l);
    }
    return res;
}

}  // namespace elementary_math

using ll = long long;

using namespace std;

void solve() {
    ll n;
    cin >> n;

    auto ps = elementary_math::prime_factor(n);
    set<pair<ll, ll>> s;
    auto dfs = [&](auto self, int d, ll p, ll q) -> void {
        if (d == int(ps.size())) {
            if (p > q) return;
            ll g = gcd(p, q);
            s.emplace(p / g, q / g);
            return;
        }
        auto [x, y] = ps[d];
        for (int i = 0; i <= y; i++) {
            for (int j = 0; i + j <= y; j++) {
                ll np = p, nq = q;
                for (int k = 0; k < i; k++) np *= x;
                for (int k = 0; k < j; k++) nq *= x;
                self(self, d + 1, np, nq);
            }
        }
    };
    dfs(dfs, 0, 1, 1);
    int ans = s.size();

    cout << ans << "\n";
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(15);

    int q;
    cin >> q;
    for (; q--;) solve();
    return 0;
}

详细

Test #1:

score: 100
Accepted
time: 0ms
memory: 3604kb

input:

10
1
2
3
4
5
6
7
8
9
10

output:

1
2
2
3
2
5
2
4
3
5

result:

ok 10 lines

Test #2:

score: -100
Time Limit Exceeded

input:

2000
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
6469693230
646969323...

output:


result: