QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#540267#8932. Bingoucup-team4702#TL 95ms150252kbC++177.5kb2024-08-31 16:46:432024-08-31 16:46:43

Judging History

你现在查看的是最新测评结果

  • [2024-08-31 16:46:43]
  • 评测
  • 测评结果:TL
  • 用时:95ms
  • 内存:150252kb
  • [2024-08-31 16:46:43]
  • 提交

answer

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <array>
#include <cstring>
using namespace std;

const int MAXN = 3e6 + 5, N = 3e6 + 5;
bool _stmer;

struct bign
{  
    int len, s[MAXN];  
    bign ()  //初始化
    {  
        memset(s, 0, sizeof(s));  
        len = 1;  
    }  
    bign (int num) { *this = num; }  
    bign (const char *num) { *this = num; }  //让this指针指向当前字符串
    bign operator = (const int num)  
    {  
        char s[MAXN];  
        sprintf(s, "%d", num);  //sprintf函数将整型映到字符串中
        *this = s;  
        return *this;  //再将字符串转到下面字符串转化的函数中
    }  
    bign operator = (const char *num)  
    {  
        for(int i = 0; num[i] == '0'; num++) ;  //去前导0  
        len = strlen(num);  
        for(int i = 0; i < len; i++) s[i] = num[len-i-1] - '0'; //反着存
        return *this;
    }  
    bign operator + (const bign &b) const //对应位相加,最为简单
    {  
        bign c;  
        c.len = 0;  
        for(int i = 0, g = 0; g || i < max(len, b.len); i++)  
        {  
            int x = g;  
            if(i < len) x += s[i];  
            if(i < b.len) x += b.s[i];  
            c.s[c.len++] = x % 10;  //关于加法进位
            g = x / 10;  
        }  
        return c;  
    }  
    bign operator += (const bign &b)  //如上文所说,此类运算符皆如此重载
    {  
        *this = *this + b;  
        return *this;  
    }  
    void clean()  //由于接下来的运算不能确定结果的长度,先大而估之然后再查
    {  
        while(len > 1 && !s[len-1]) len--;  //首位部分‘0’故删除该部分长度
    }   
    bign operator * (const bign &b) //乘法重载在于列竖式,再将竖式中的数转为抽象,即可看出运算法则。
    {  
        bign c;  
        c.len = len + b.len;  
        for(int i = 0; i < len; i++)  
        {  
            for(int j = 0; j < b.len; j++)  
            {  
                c.s[i+j] += s[i] * b.s[j];//不妨列个竖式看一看
            }  
        }  
        for(int i = 0; i < c.len; i++) //关于进位,与加法意同 
        {  
            c.s[i+1] += c.s[i]/10;
            c.s[i] %= 10;
        }  
        c.clean();  //我们估的位数是a+b的长度和,但可能比它小(1*1 = 1)
        return c;  
    }  
    bign operator *= (const bign &b)  
    {  
        *this = *this * b;  
        return *this;  
    }  
    bign operator - (const bign &b)  //对应位相减,加法的进位改为借1
    {  //不考虑负数
        bign c;  
        c.len = 0;  
        for(int i = 0, g = 0; i < len; i++)  
        {  
            int x = s[i] - g;  
            if(i < b.len) x -= b.s[i];  //可能长度不等
            if(x >= 0) g = 0;  //是否向上移位借1
            else  
            {  
                g = 1;  
                x += 10;  
            }  
            c.s[c.len++] = x;  
        }  
        c.clean();  
        return c;   
    }  
    bign operator -= (const bign &b)  
    {  
        *this = *this - b;  
        return *this;  
    }  
    bign operator / (const bign &b)  //运用除是减的本质,不停地减,直到小于被减数
    {  
        bign c, f = 0; //可能会在使用减法时出现高精度运算 
        for(int i = len-1; i >= 0; i--)  //正常顺序,从最高位开始
        {  
            f = f*10;  //上面位的剩余到下一位*10
            f.s[0] = s[i];  //加上当前位
            while(f >= b)  
            {  
                f -= b;  
                c.s[i]++;  
            }  
        }  
        c.len = len;  //估最长位
        c.clean();  
        return c;  
    }  
    bign operator /= (const bign &b)  
    {  
        *this  = *this / b;  
        return *this;  
    }  
    bign operator % (const bign &b)  //取模就是除完剩下的
    {  
        bign r = *this / b;  
        r = *this - r*b;  
        r.clean();
        return r;  
    }  
    bign operator %= (const bign &b)  
    {  
        *this = *this % b;  
        return *this;  
    }  
    bool operator < (const bign &b) //字符串比较原理 
    {  
        if(len != b.len) return len < b.len;  
        for(int i = len-1; i != -1; i--)  
        {  
            if(s[i] != b.s[i]) return s[i] < b.s[i];  
        }  
        return false;  
    }  
    bool operator > (const bign &b)  //同理
    {  
        if(len != b.len) return len > b.len;  
        for(int i = len-1; i != -1; i--)  
        {  
            if(s[i] != b.s[i]) return s[i] > b.s[i];  
        }  
        return false;  
    }  
    bool operator == (const bign &b)  
    {  
        return !(*this > b) && !(*this < b);  
    }  
    bool operator != (const bign &b)  
    {  
        return !(*this == b);  
    }  
    bool operator <= (const bign &b)  
    {  
        return *this < b || *this == b;  
    }  
    bool operator >= (const bign &b)  
    {  
        return *this > b || *this == b;  
    }  
    string str() const  //将结果转化为字符串(用于输出)
    {  
        string res = "";  
        for(int i = 0; i < len; i++) res = char(s[i]+'0')+res;  
        return res;  
    }  
};  

istream& operator >> (istream &in, bign &x) //重载输入流 
{  
    string s;  
    in >> s;  
    x = s.c_str();  //string转化为char[]
    return in;  
}  

ostream& operator << (ostream &out, const bign &x)  //重载输出流
{  
    out << x.str();  
    return out;  
}

int strbuf[N];

void solve() {
    bign n, m;
    cin >> n >> m;
    bign ans = n + m - (n % m);
    /* cout << ans << endl; */
    bign res1 = n + 1;
    bool flg1 = 0;
    for (int i = 0; i + m.len < res1.len; i++) {
        bool flg = 0;
        for (int j = m.len - 1; ~j; j--)
            if (res1.s[i + j] != m.s[j]) { flg = 1; break; }
        if (flg) continue;
        flg1 = 1; break;
    }
    if (flg1) { return (void)(cout << res1 << endl); }

    bign res2 = 0; int pos2 = -1;
    for (int i = 0; i + m.len < n.len; i++) {
        bool flg = 0;
        for (int j = m.len - 1; ~j; j--) {
            if (res1.s[i + j] == m.s[j]) continue;
            if (res1.s[i + j] > m.s[j]) { flg = 1; break; }
            if (res1.s[i + j] < m.s[j]) { flg = 0; break; }
        }
        if (flg) continue;
        pos2 = i;
    }
    if (~pos2) {
        bign tp = 0;
        for (int i = pos2 + m.len; i < n.len; i++)
            tp.s[tp.len++] = n.s[i];
        tp = tp;
        for (int i = 0; i < pos2; i++)
            res2.s[res2.len++] = 0;
        int pos3 = pos2 + m.len;
        for (int i = pos2; i < pos3; i++)
            res2.s[res2.len++] = m.s[i - pos2];
        for (int i = pos3; i < pos3 + tp.len; i++)
            res2.s[res2.len++] = tp.s[i - pos3];
    }

    bign res3 = 0;
    for (int i = 0; i < m.len; i++)
        res3.s[res3.len++] = m.s[i];
    bign tp = 0;
    for (int i = m.len; i < n.len; i++)
        tp.s[tp.len++] = n.s[i];
    tp = tp + 1;
    for (int i = m.len; i < m.len + tp.len; i++)
        res3.s[res3.len++] = tp.s[i - m.len];
    if (res2.len && res2 < res3)
        res3 = res2;
    if (res3 < ans) cout << res3 << endl;
    else cout << ans << endl;
}

bool _edmer;
int main() {
    cerr << (&_stmer - &_edmer) / 1024.0 / 1024.0 << "MB\n";
    int T; cin >> T;
    while (T--) solve();
    return 0;
}

详细

Test #1:

score: 100
Accepted
time: 95ms
memory: 150252kb

input:

6
7 3
12 3
9 10
249 51
1369 37
2 1

output:

9
13
10
251
1370
3

result:

ok 6 lines

Test #2:

score: -100
Time Limit Exceeded

input:

100000
3196282243 28
7614814237 33
2814581084 97
1075124401 58
7822266214 100
1767317768 31
7189709841 75
9061337538 69
6552679231 38
9946082148 18
5497675062 54
7787300351 65
4310767261 68
4811341953 100
3265496130 31
8294404054 62
2845521744 90
1114254672 26
6442013672 13
3744046866 40
3289624367 ...

output:

3196282244
7614814251
2814581100
1075124424
7822266300
1767317769
7189709850
9061337577
6552679264
9946082160
5497675092
7787300365
4310767316
4811342000
3265496131
8294404082
2845521810
1114254674
6442013673
3744046867
3289624425
6477935360
1292587554
5504674742
2898829200
7882736025
2846033436
923...

result: