QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#528936 | #1360. Determinant | suspicious-impostor | RE | 0ms | 0kb | C++20 | 54.3kb | 2024-08-24 03:36:51 | 2024-08-24 03:36:52 |
answer
#include <optional>
#include <utility>
#include <cassert>
#include <tuple>
namespace cp_algo::algebra {
// a * x + b
template<typename base>
struct lin {
base a = 1, b = 0;
std::optional<base> c;
lin() {}
lin(base b): a(0), b(b) {}
lin(base a, base b): a(a), b(b) {}
lin(base a, base b, base _c): a(a), b(b), c(_c) {}
// polynomial product modulo x^2 - c
lin operator * (const lin& t) {
assert(c && t.c && *c == *t.c);
return {a * t.b + b * t.a, b * t.b + a * t.a * (*c), *c};
}
// a * (t.a * x + t.b) + b
lin apply(lin const& t) const {
return {a * t.a, a * t.b + b};
}
void prepend(lin const& t) {
*this = t.apply(*this);
}
base eval(base x) const {
return a * x + b;
}
};
// (ax+b) / (cx+d)
template<typename base>
struct linfrac {
base a, b, c, d;
linfrac(): a(1), b(0), c(0), d(1) {} // x, identity for composition
linfrac(base a): a(a), b(1), c(1), d(0) {} // a + 1/x, for continued fractions
linfrac(base a, base b, base c, base d): a(a), b(b), c(c), d(d) {}
// composition of two linfracs
linfrac operator * (linfrac t) const {
return t.prepend(linfrac(*this));
}
linfrac operator-() const {
return {-a, -b, -c, -d};
}
linfrac adj() const {
return {d, -b, -c, a};
}
linfrac& prepend(linfrac const& t) {
t.apply(a, c);
t.apply(b, d);
return *this;
}
// apply linfrac to A/B
void apply(base &A, base &B) const {
std::tie(A, B) = std::pair{a * A + b * B, c * A + d * B};
}
};
}
#line 1 "cp-algorithms-aux/cp-algo/algebra/fft.hpp"
#line 1 "cp-algorithms-aux/cp-algo/algebra/common.hpp"
#include <functional>
#include <cstdint>
namespace cp_algo::algebra {
const int maxn = 1 << 12;
const int magic = 250; // threshold for sizes to run the naive algo
auto bpow(auto const& x, int64_t n, auto const& one, auto op) {
if(n == 0) {
return one;
} else {
auto t = bpow(x, n / 2, one, op);
t = op(t, t);
if(n % 2) {
t = op(t, x);
}
return t;
}
}
auto bpow(auto x, int64_t n, auto ans) {
return bpow(x, n, ans, std::multiplies{});
}
template<typename T>
T bpow(T const& x, int64_t n) {
return bpow(x, n, T(1));
}
template<typename T>
T fact(int n) {
static T F[maxn];
static bool init = false;
if(!init) {
F[0] = T(1);
for(int i = 1; i < maxn; i++) {
F[i] = F[i - 1] * T(i);
}
init = true;
}
return F[n];
}
template<typename T>
T rfact(int n) {
static T F[maxn];
static bool init = false;
if(!init) {
F[maxn - 1] = T(1) / fact<T>(maxn - 1);
for(int i = maxn - 2; i >= 0; i--) {
F[i] = F[i + 1] * T(i + 1);
}
init = true;
}
return F[n];
}
template<typename T>
T small_inv(int n) {
static T F[maxn];
static bool init = false;
if(!init) {
for(int i = 1; i < maxn; i++) {
F[i] = rfact<T>(i) * fact<T>(i - 1);
}
init = true;
}
return F[n];
}
}
#line 1 "cp-algorithms-aux/cp-algo/algebra/modular.hpp"
#line 1 "cp-algorithms-aux/cp-algo/random/rng.hpp"
#include <chrono>
#include <random>
namespace cp_algo::random {
uint64_t rng() {
static std::mt19937_64 rng(std::chrono::steady_clock::now().time_since_epoch().count());
return rng();
}
}
#line 6 "cp-algorithms-aux/cp-algo/algebra/modular.hpp"
#include <algorithm>
#include <iostream>
#line 9 "cp-algorithms-aux/cp-algo/algebra/modular.hpp"
namespace cp_algo::algebra {
template<int m>
struct modular {
// https://en.wikipedia.org/wiki/Berlekamp-Rabin_algorithm
std::optional<modular> sqrt() const {
if(r == 0) {
return 0;
} else if(bpow(*this, (m - 1) / 2) != modular(1)) {
return std::nullopt;
} else {
while(true) {
modular z = random::rng();
if(z * z == *this) {
return z;
}
lin<modular> x(1, z, *this); // x + z (mod x^2 - b)
x = bpow(x, (m - 1) / 2, lin<modular>(0, 1, *this));
if(x.a != modular(0)) {
return x.a.inv();
}
}
}
}
uint64_t r;
constexpr modular(): r(0) {}
constexpr modular(int64_t rr): r(rr % m) {r = std::min<uint64_t>(r, r + m);}
modular inv() const {return bpow(*this, m - 2);}
modular operator - () const {return std::min(-r, m - r);}
modular operator * (const modular &t) const {return r * t.r;}
modular operator / (const modular &t) const {return *this * t.inv();}
modular& operator += (const modular &t) {r += t.r; r = std::min(r, r - m); return *this;}
modular& operator -= (const modular &t) {r -= t.r; r = std::min(r, r + m); return *this;}
modular operator + (const modular &t) const {return modular(*this) += t;}
modular operator - (const modular &t) const {return modular(*this) -= t;}
modular& operator *= (const modular &t) {return *this = *this * t;}
modular& operator /= (const modular &t) {return *this = *this / t;}
auto operator <=> (const modular &t) const = default;
explicit operator int() const {return r;}
int64_t rem() const {return 2 * r > m ? r - m : r;}
// Only use if you really know what you're doing!
static constexpr uint64_t mm = 8LL * m * m;
void add_unsafe(uint64_t t) {r += t;}
void pseudonormalize() {r = std::min(r, r - mm);}
modular& normalize() {if(r >= m) r %= m; return *this;}
};
template<int m>
std::istream& operator >> (std::istream &in, modular<m> &x) {
return in >> x.r;
}
template<int m>
std::ostream& operator << (std::ostream &out, modular<m> const& x) {
return out << x.r % m;
}
}
#line 7 "cp-algorithms-aux/cp-algo/algebra/fft.hpp"
#include <vector>
namespace cp_algo::algebra::fft {
using ftype = double;
struct point {
ftype x, y;
ftype real() {return x;}
ftype imag() {return y;}
point(): x(0), y(0){}
point(ftype x, ftype y = 0): x(x), y(y){}
static point polar(ftype rho, ftype ang) {
return point{rho * cos(ang), rho * sin(ang)};
}
point conj() const {
return {x, -y};
}
point operator +=(const point &t) {x += t.x, y += t.y; return *this;}
point operator +(const point &t) const {return point(*this) += t;}
point operator -(const point &t) const {return {x - t.x, y - t.y};}
point operator *(const point &t) const {return {x * t.x - y * t.y, x * t.y + y * t.x};}
};
point w[maxn]; // w[2^n + k] = exp(pi * k / (2^n))
int bitr[maxn];// b[2^n + k] = bitreverse(k)
const ftype pi = acos(-1);
bool initiated = 0;
void init() {
if(!initiated) {
for(int i = 1; i < maxn; i *= 2) {
int ti = i / 2;
for(int j = 0; j < i; j++) {
w[i + j] = point::polar(ftype(1), pi * j / i);
if(ti) {
bitr[i + j] = 2 * bitr[ti + j % ti] + (j >= ti);
}
}
}
initiated = 1;
}
}
void fft(auto &a, int n) {
init();
if(n == 1) {
return;
}
int hn = n / 2;
for(int i = 0; i < n; i++) {
int ti = 2 * bitr[hn + i % hn] + (i > hn);
if(i < ti) {
std::swap(a[i], a[ti]);
}
}
for(int i = 1; i < n; i *= 2) {
for(int j = 0; j < n; j += 2 * i) {
for(int k = j; k < j + i; k++) {
point t = a[k + i] * w[i + k - j];
a[k + i] = a[k] - t;
a[k] += t;
}
}
}
}
void mul_slow(std::vector<auto> &a, const std::vector<auto> &b) {
if(a.empty() || b.empty()) {
a.clear();
} else {
int n = a.size();
int m = b.size();
a.resize(n + m - 1);
for(int k = n + m - 2; k >= 0; k--) {
a[k] *= b[0];
for(int j = std::max(k - n + 1, 1); j < std::min(k + 1, m); j++) {
a[k] += a[k - j] * b[j];
}
}
}
}
template<int m>
struct dft {
static constexpr int split = 1 << 15;
std::vector<point> A;
dft(std::vector<modular<m>> const& a, size_t n): A(n) {
for(size_t i = 0; i < std::min(n, a.size()); i++) {
A[i] = point(
a[i].rem() % split,
a[i].rem() / split
);
}
if(n) {
fft(A, n);
}
}
auto operator * (dft const& B) {
assert(A.size() == B.A.size());
size_t n = A.size();
if(!n) {
return std::vector<modular<m>>();
}
std::vector<point> C(n), D(n);
for(size_t i = 0; i < n; i++) {
C[i] = A[i] * (B[i] + B[(n - i) % n].conj());
D[i] = A[i] * (B[i] - B[(n - i) % n].conj());
}
fft(C, n);
fft(D, n);
reverse(begin(C) + 1, end(C));
reverse(begin(D) + 1, end(D));
int t = 2 * n;
std::vector<modular<m>> res(n);
for(size_t i = 0; i < n; i++) {
modular<m> A0 = llround(C[i].real() / t);
modular<m> A1 = llround(C[i].imag() / t + D[i].imag() / t);
modular<m> A2 = llround(D[i].real() / t);
res[i] = A0 + A1 * split - A2 * split * split;
}
return res;
}
point& operator [](int i) {return A[i];}
point operator [](int i) const {return A[i];}
};
size_t com_size(size_t as, size_t bs) {
if(!as || !bs) {
return 0;
}
size_t n = as + bs - 1;
while(__builtin_popcount(n) != 1) {
n++;
}
return n;
}
template<int m>
void mul(std::vector<modular<m>> &a, std::vector<modular<m>> b) {
if(std::min(a.size(), b.size()) < magic) {
mul_slow(a, b);
return;
}
auto n = com_size(a.size(), b.size());
auto A = dft<m>(a, n);
if(a == b) {
a = A * A;
} else {
a = A * dft<m>(b, n);
}
}
}
#line 7 "cp-algorithms-aux/cp-algo/algebra/poly/impl/euclid.hpp"
#include <numeric>
#line 11 "cp-algorithms-aux/cp-algo/algebra/poly/impl/euclid.hpp"
#include <list>
// operations related to gcd and Euclidean algo
namespace cp_algo::algebra::poly::impl {
template<typename poly>
using gcd_result = std::pair<
std::list<std::decay_t<poly>>,
linfrac<std::decay_t<poly>>>;
template<typename poly>
gcd_result<poly> half_gcd(poly &&A, poly &&B) {
assert(A.deg() >= B.deg());
int m = size(A.a) / 2;
if(B.deg() < m) {
return {};
}
auto [ai, R] = A.divmod(B);
std::tie(A, B) = {B, R};
std::list a = {ai};
auto T = -linfrac(ai).adj();
auto advance = [&](int k) {
auto [ak, Tk] = half_gcd(A.div_xk(k), B.div_xk(k));
a.splice(end(a), ak);
T.prepend(Tk);
return Tk;
};
advance(m).apply(A, B);
if constexpr (std::is_reference_v<poly>) {
advance(2 * m - A.deg()).apply(A, B);
} else {
advance(2 * m - A.deg());
}
return {std::move(a), std::move(T)};
}
template<typename poly>
gcd_result<poly> full_gcd(poly &&A, poly &&B) {
using poly_t = std::decay_t<poly>;
std::list<poly_t> ak;
std::vector<linfrac<poly_t>> trs;
while(!B.is_zero()) {
auto [a0, R] = A.divmod(B);
ak.push_back(a0);
trs.push_back(-linfrac(a0).adj());
std::tie(A, B) = {B, R};
auto [a, Tr] = half_gcd(A, B);
ak.splice(end(ak), a);
trs.push_back(Tr);
}
return {ak, std::accumulate(rbegin(trs), rend(trs), linfrac<poly_t>{}, std::multiplies{})};
}
// computes product of linfrac on [L, R)
auto convergent(auto L, auto R) {
using poly = decltype(L)::value_type;
if(R == next(L)) {
return linfrac(*L);
} else {
int s = std::transform_reduce(L, R, 0, std::plus{}, std::mem_fn(&poly::deg));
auto M = L;
for(int c = M->deg(); 2 * c <= s; M++) {
c += next(M)->deg();
}
return convergent(L, M) * convergent(M, R);
}
}
template<typename poly>
poly min_rec(poly const& p, size_t d) {
auto R2 = p.mod_xk(d).reverse(d), R1 = poly::xk(d);
if(R2.is_zero()) {
return poly(1);
}
auto [a, Tr] = full_gcd(R1, R2);
a.emplace_back();
auto pref = begin(a);
for(int delta = d - a.front().deg(); delta >= 0; pref++) {
delta -= pref->deg() + next(pref)->deg();
}
return convergent(begin(a), pref).a;
}
template<typename poly>
std::optional<poly> inv_mod(poly p, poly q) {
assert(!q.is_zero());
auto [a, Tr] = full_gcd(q, p);
if(q.deg() != 0) {
return std::nullopt;
}
return Tr.b / q[0];
}
}
#line 1 "cp-algorithms-aux/cp-algo/algebra/poly/impl/base.hpp"
#line 6 "cp-algorithms-aux/cp-algo/algebra/poly/impl/base.hpp"
// really basic operations, typically taking O(n)
namespace cp_algo::algebra::poly::impl {
void normalize(auto& p) {
while(p.deg() >= 0 && p.lead() == 0) {
p.a.pop_back();
}
}
auto neg(auto p) {
std::ranges::transform(p.a, begin(p.a), std::negate{});
return p;
}
auto& scale(auto &p, auto x) {
for(auto &it: p.a) {
it *= x;
}
p.normalize();
return p;
}
auto& add(auto &p, auto q) {
p.a.resize(std::max(p.a.size(), q.a.size()));
std::ranges::transform(p.a, q.a, begin(p.a), std::plus{});
normalize(p);
return p;
}
auto& sub(auto &p, auto q) {
p.a.resize(std::max(p.a.size(), q.a.size()));
std::ranges::transform(p.a, q.a, begin(p.a), std::minus{});
normalize(p);
return p;
}
auto mod_xk(auto const& p, size_t k) {
return std::vector(begin(p.a), begin(p.a) + std::min(k, p.a.size()));
}
auto mul_xk(auto p, int k) {
if(k < 0) {
return p.div_xk(-k);
}
p.a.insert(begin(p.a), k, 0);
normalize(p);
return p;
}
template<typename poly>
poly div_xk(poly const& p, int k) {
if(k < 0) {
return p.mul_xk(-k);
}
return std::vector(begin(p.a) + std::min<size_t>(k, p.a.size()), end(p.a));
}
auto substr(auto const& p, size_t l, size_t r) {
return std::vector(
begin(p.a) + std::min(l, p.a.size()),
begin(p.a) + std::min(r, p.a.size())
);
}
auto reverse(auto p, size_t n) {
p.a.resize(n);
std::ranges::reverse(p.a);
normalize(p);
return p;
}
}
#line 1 "cp-algorithms-aux/cp-algo/algebra/poly/impl/div.hpp"
#line 6 "cp-algorithms-aux/cp-algo/algebra/poly/impl/div.hpp"
// operations related to polynomial division
namespace cp_algo::algebra::poly::impl {
auto divmod_slow(auto const& p, auto const& q) {
auto R = p;
auto D = decltype(p){};
auto q_lead_inv = q.lead().inv();
while(R.deg() >= q.deg()) {
D.a.push_back(R.lead() * q_lead_inv);
if(D.lead() != 0) {
for(size_t i = 1; i <= q.a.size(); i++) {
R.a[R.a.size() - i] -= D.lead() * q.a[q.a.size() - i];
}
}
R.a.pop_back();
}
std::ranges::reverse(D.a);
R.normalize();
return std::array{D, R};
}
template<typename poly>
auto divmod_hint(poly const& p, poly const& q, poly const& qri) {
assert(!q.is_zero());
int d = p.deg() - q.deg();
if(std::min(d, q.deg()) < magic) {
return divmod_slow(p, q);
}
poly D;
if(d >= 0) {
D = (p.reverse().mod_xk(d + 1) * qri.mod_xk(d + 1)).mod_xk(d + 1).reverse(d + 1);
}
return std::array{D, p - D * q};
}
auto divmod(auto const& p, auto const& q) {
assert(!q.is_zero());
int d = p.deg() - q.deg();
if(std::min(d, q.deg()) < magic) {
return divmod_slow(p, q);
}
return divmod_hint(p, q, q.reverse().inv(d + 1));
}
template<typename poly>
poly powmod_hint(poly const& p, int64_t k, poly const& md, poly const& mdri) {
return bpow(p, k, poly(1), [&](auto const& p, auto const& q){
return divmod_hint(p * q, md, mdri)[1];
});
}
template<typename poly>
auto powmod(poly const& p, int64_t k, poly const& md) {
int d = md.deg();
if(p == poly::xk(1) && false) { // does it actually speed anything up?..
if(k < md.deg()) {
return poly::xk(k);
} else {
auto mdr = md.reverse();
return (mdr.inv(k - md.deg() + 1, md.deg()) * mdr).reverse(md.deg());
}
}
if(md == poly::xk(d)) {
return p.pow(k, d);
}
if(md == poly::xk(d) - poly(1)) {
return p.powmod_circular(k, d);
}
return powmod_hint(p, k, md, md.reverse().inv(md.deg() + 1));
}
auto interleave(auto const& p) {
auto [p0, p1] = p.bisect();
return p0 * p0 - (p1 * p1).mul_xk(1);
}
template<typename poly>
poly inv(poly const& q, int64_t k, size_t n) {
if(k <= std::max<int64_t>(n, size(q.a))) {
return q.inv(k + n).div_xk(k);
}
if(k % 2) {
return inv(q, k - 1, n + 1).div_xk(1);
}
auto qq = inv(interleave(q), k / 2 - q.deg() / 2, (n + 1) / 2 + q.deg() / 2);
auto [q0, q1] = q.negx().bisect();
return (
(q0 * qq).x2() + (q1 * qq).x2().mul_xk(1)
).div_xk(2*q0.deg()).mod_xk(n);
}
template<typename poly>
poly inv(poly const& p, size_t n) {
auto q = p.mod_xk(n);
if(n == 1) {
return poly(1) / q[0];
}
// Q(-x) = P0(x^2) + xP1(x^2)
auto [q0, q1] = q.negx().bisect();
int N = fft::com_size((n + 1) / 2, (n + 1) / 2);
auto q0f = fft::dft(q0.a, N);
auto q1f = fft::dft(q1.a, N);
// Q(x)*Q(-x) = Q0(x^2)^2 - x^2 Q1(x^2)^2
auto qqf = fft::dft(inv(
poly(q0f * q0f) - poly(q1f * q1f).mul_xk(1)
, (n + 1) / 2).a, N);
return (
poly(q0f * qqf).x2() + poly(q1f * qqf).x2().mul_xk(1)
).mod_xk(n);
}
}
#line 15 "cp-algorithms-aux/cp-algo/algebra/poly.hpp"
namespace cp_algo::algebra {
template<typename T>
struct poly_t {
using base = T;
std::vector<T> a;
void normalize() {poly::impl::normalize(*this);}
poly_t(){}
poly_t(T a0): a{a0} {normalize();}
poly_t(std::vector<T> const& t): a(t) {normalize();}
poly_t operator -() const {return poly::impl::neg(*this);}
poly_t& operator += (poly_t const& t) {return poly::impl::add(*this, t);}
poly_t& operator -= (poly_t const& t) {return poly::impl::sub(*this, t);}
poly_t operator + (poly_t const& t) const {return poly_t(*this) += t;}
poly_t operator - (poly_t const& t) const {return poly_t(*this) -= t;}
poly_t mod_xk(size_t k) const {return poly::impl::mod_xk(*this, k);} // %= x^k
poly_t mul_xk(size_t k) const {return poly::impl::mul_xk(*this, k);} // *= x^k
poly_t div_xk(size_t k) const {return poly::impl::div_xk(*this, k);} // /= x^k
poly_t substr(size_t l, size_t r) const {return poly::impl::substr(*this, l, r);}
poly_t operator *= (const poly_t &t) {fft::mul(a, t.a); normalize(); return *this;}
poly_t operator * (const poly_t &t) const {return poly_t(*this) *= t;}
poly_t& operator /= (const poly_t &t) {return *this = divmod(t)[0];}
poly_t& operator %= (const poly_t &t) {return *this = divmod(t)[1];}
poly_t operator / (poly_t const& t) const {return poly_t(*this) /= t;}
poly_t operator % (poly_t const& t) const {return poly_t(*this) %= t;}
poly_t& operator *= (T const& x) {return *this = poly::impl::scale(*this, x);}
poly_t& operator /= (T const& x) {return *this *= x.inv();}
poly_t operator * (T const& x) const {return poly_t(*this) *= x;}
poly_t operator / (T const& x) const {return poly_t(*this) /= x;}
poly_t reverse(size_t n) const {return poly::impl::reverse(*this, n);}
poly_t reverse() const {return reverse(size(a));}
std::array<poly_t, 2> divmod(poly_t const& b) const {
return poly::impl::divmod(*this, b);
}
// reduces A/B to A'/B' such that
// deg B' < deg A / 2
static std::pair<std::list<poly_t>, linfrac<poly_t>> half_gcd(auto &&A, auto &&B) {
return poly::impl::half_gcd(A, B);
}
// reduces A / B to gcd(A, B) / 0
static std::pair<std::list<poly_t>, linfrac<poly_t>> full_gcd(auto &&A, auto &&B) {
return poly::impl::full_gcd(A, B);
}
static poly_t gcd(poly_t &&A, poly_t &&B) {
full_gcd(A, B);
return A;
}
// Returns a (non-monic) characteristic polynomial
// of the minimum linear recurrence for the sequence
poly_t min_rec(size_t d) const {
return poly::impl::min_rec(*this, d);
}
// calculate inv to *this modulo t
std::optional<poly_t> inv_mod(poly_t const& t) const {
return poly::impl::inv_mod(*this, t);
};
poly_t negx() const { // A(x) -> A(-x)
auto res = *this;
for(int i = 1; i <= deg(); i += 2) {
res.a[i] = -res[i];
}
return res;
}
void print(int n) const {
for(int i = 0; i < n; i++) {
std::cout << (*this)[i] << ' ';
}
std::cout << "\n";
}
void print() const {
print(deg() + 1);
}
T eval(T x) const { // evaluates in single point x
T res(0);
for(int i = deg(); i >= 0; i--) {
res *= x;
res += a[i];
}
return res;
}
T lead() const { // leading coefficient
assert(!is_zero());
return a.back();
}
int deg() const { // degree, -1 for P(x) = 0
return (int)a.size() - 1;
}
bool is_zero() const {
return a.empty();
}
T operator [](int idx) const {
return idx < 0 || idx > deg() ? T(0) : a[idx];
}
T& coef(size_t idx) { // mutable reference at coefficient
return a[idx];
}
bool operator == (const poly_t &t) const {return a == t.a;}
bool operator != (const poly_t &t) const {return a != t.a;}
poly_t deriv(int k = 1) const { // calculate derivative
if(deg() + 1 < k) {
return poly_t(T(0));
}
std::vector<T> res(deg() + 1 - k);
for(int i = k; i <= deg(); i++) {
res[i - k] = fact<T>(i) * rfact<T>(i - k) * a[i];
}
return res;
}
poly_t integr() const { // calculate integral with C = 0
std::vector<T> res(deg() + 2);
for(int i = 0; i <= deg(); i++) {
res[i + 1] = a[i] * small_inv<T>(i + 1);
}
return res;
}
size_t trailing_xk() const { // Let p(x) = x^k * t(x), return k
if(is_zero()) {
return -1;
}
int res = 0;
while(a[res] == T(0)) {
res++;
}
return res;
}
poly_t log(size_t n) const { // calculate log p(x) mod x^n
assert(a[0] == T(1));
return (deriv().mod_xk(n) * inv(n)).integr().mod_xk(n);
}
poly_t exp(size_t n) const { // calculate exp p(x) mod x^n
if(is_zero()) {
return T(1);
}
assert(a[0] == T(0));
poly_t ans = T(1);
size_t a = 1;
while(a < n) {
poly_t C = ans.log(2 * a).div_xk(a) - substr(a, 2 * a);
ans -= (ans * C).mod_xk(a).mul_xk(a);
a *= 2;
}
return ans.mod_xk(n);
}
poly_t pow_bin(int64_t k, size_t n) const { // O(n log n log k)
if(k == 0) {
return poly_t(1).mod_xk(n);
} else {
auto t = pow(k / 2, n);
t = (t * t).mod_xk(n);
return (k % 2 ? *this * t : t).mod_xk(n);
}
}
poly_t circular_closure(size_t m) const {
if(deg() == -1) {
return *this;
}
auto t = *this;
for(size_t i = t.deg(); i >= m; i--) {
t.a[i - m] += t.a[i];
}
t.a.resize(std::min(t.a.size(), m));
return t;
}
static poly_t mul_circular(poly_t const& a, poly_t const& b, size_t m) {
return (a.circular_closure(m) * b.circular_closure(m)).circular_closure(m);
}
poly_t powmod_circular(int64_t k, size_t m) const {
if(k == 0) {
return poly_t(1);
} else {
auto t = powmod_circular(k / 2, m);
t = mul_circular(t, t, m);
if(k % 2) {
t = mul_circular(t, *this, m);
}
return t;
}
}
poly_t powmod(int64_t k, poly_t const& md) const {
return poly::impl::powmod(*this, k, md);
}
// O(d * n) with the derivative trick from
// https://codeforces.com/blog/entry/73947?#comment-581173
poly_t pow_dn(int64_t k, size_t n) const {
if(n == 0) {
return poly_t(T(0));
}
assert((*this)[0] != T(0));
std::vector<T> Q(n);
Q[0] = bpow(a[0], k);
auto a0inv = a[0].inv();
for(int i = 1; i < (int)n; i++) {
for(int j = 1; j <= std::min(deg(), i); j++) {
Q[i] += a[j] * Q[i - j] * (T(k) * T(j) - T(i - j));
}
Q[i] *= small_inv<T>(i) * a0inv;
}
return Q;
}
// calculate p^k(n) mod x^n in O(n log n)
// might be quite slow due to high constant
poly_t pow(int64_t k, size_t n) const {
if(is_zero()) {
return k ? *this : poly_t(1);
}
int i = trailing_xk();
if(i > 0) {
return k >= int64_t(n + i - 1) / i ? poly_t(T(0)) : div_xk(i).pow(k, n - i * k).mul_xk(i * k);
}
if(std::min(deg(), (int)n) <= magic) {
return pow_dn(k, n);
}
if(k <= magic) {
return pow_bin(k, n);
}
T j = a[i];
poly_t t = *this / j;
return bpow(j, k) * (t.log(n) * T(k)).exp(n).mod_xk(n);
}
// returns std::nullopt if undefined
std::optional<poly_t> sqrt(size_t n) const {
if(is_zero()) {
return *this;
}
int i = trailing_xk();
if(i % 2) {
return std::nullopt;
} else if(i > 0) {
auto ans = div_xk(i).sqrt(n - i / 2);
return ans ? ans->mul_xk(i / 2) : ans;
}
auto st = (*this)[0].sqrt();
if(st) {
poly_t ans = *st;
size_t a = 1;
while(a < n) {
a *= 2;
ans -= (ans - mod_xk(a) * ans.inv(a)).mod_xk(a) / 2;
}
return ans.mod_xk(n);
}
return std::nullopt;
}
poly_t mulx(T a) const { // component-wise multiplication with a^k
T cur = 1;
poly_t res(*this);
for(int i = 0; i <= deg(); i++) {
res.coef(i) *= cur;
cur *= a;
}
return res;
}
poly_t mulx_sq(T a) const { // component-wise multiplication with a^{k choose 2}
T cur = 1, total = 1;
poly_t res(*this);
for(int i = 0; i <= deg(); i++) {
res.coef(i) *= total;
cur *= a;
total *= cur;
}
return res;
}
// be mindful of maxn, as the function
// requires multiplying polynomials of size deg() and n+deg()!
poly_t chirpz(T z, int n) const { // P(1), P(z), P(z^2), ..., P(z^(n-1))
if(is_zero()) {
return std::vector<T>(n, 0);
}
if(z == T(0)) {
std::vector<T> ans(n, (*this)[0]);
if(n > 0) {
ans[0] = accumulate(begin(a), end(a), T(0));
}
return ans;
}
auto A = mulx_sq(z.inv());
auto B = ones(n+deg()).mulx_sq(z);
return semicorr(B, A).mod_xk(n).mulx_sq(z.inv());
}
// res[i] = prod_{1 <= j <= i} 1/(1 - z^j)
static auto _1mzk_prod_inv(T z, int n) {
std::vector<T> res(n, 1), zk(n);
zk[0] = 1;
for(int i = 1; i < n; i++) {
zk[i] = zk[i - 1] * z;
res[i] = res[i - 1] * (T(1) - zk[i]);
}
res.back() = res.back().inv();
for(int i = n - 2; i >= 0; i--) {
res[i] = (T(1) - zk[i+1]) * res[i+1];
}
return res;
}
// prod_{0 <= j < n} (1 - z^j x)
static auto _1mzkx_prod(T z, int n) {
if(n == 1) {
return poly_t(std::vector<T>{1, -1});
} else {
auto t = _1mzkx_prod(z, n / 2);
t *= t.mulx(bpow(z, n / 2));
if(n % 2) {
t *= poly_t(std::vector<T>{1, -bpow(z, n - 1)});
}
return t;
}
}
poly_t chirpz_inverse(T z, int n) const { // P(1), P(z), P(z^2), ..., P(z^(n-1))
if(is_zero()) {
return {};
}
if(z == T(0)) {
if(n == 1) {
return *this;
} else {
return std::vector{(*this)[1], (*this)[0] - (*this)[1]};
}
}
std::vector<T> y(n);
for(int i = 0; i < n; i++) {
y[i] = (*this)[i];
}
auto prods_pos = _1mzk_prod_inv(z, n);
auto prods_neg = _1mzk_prod_inv(z.inv(), n);
T zn = bpow(z, n-1).inv();
T znk = 1;
for(int i = 0; i < n; i++) {
y[i] *= znk * prods_neg[i] * prods_pos[(n - 1) - i];
znk *= zn;
}
poly_t p_over_q = poly_t(y).chirpz(z, n);
poly_t q = _1mzkx_prod(z, n);
return (p_over_q * q).mod_xk(n).reverse(n);
}
static poly_t build(std::vector<poly_t> &res, int v, auto L, auto R) { // builds evaluation tree for (x-a1)(x-a2)...(x-an)
if(R - L == 1) {
return res[v] = std::vector<T>{-*L, 1};
} else {
auto M = L + (R - L) / 2;
return res[v] = build(res, 2 * v, L, M) * build(res, 2 * v + 1, M, R);
}
}
poly_t to_newton(std::vector<poly_t> &tree, int v, auto l, auto r) {
if(r - l == 1) {
return *this;
} else {
auto m = l + (r - l) / 2;
auto A = (*this % tree[2 * v]).to_newton(tree, 2 * v, l, m);
auto B = (*this / tree[2 * v]).to_newton(tree, 2 * v + 1, m, r);
return A + B.mul_xk(m - l);
}
}
poly_t to_newton(std::vector<T> p) {
if(is_zero()) {
return *this;
}
int n = p.size();
std::vector<poly_t> tree(4 * n);
build(tree, 1, begin(p), end(p));
return to_newton(tree, 1, begin(p), end(p));
}
std::vector<T> eval(std::vector<poly_t> &tree, int v, auto l, auto r) { // auxiliary evaluation function
if(r - l == 1) {
return {eval(*l)};
} else {
auto m = l + (r - l) / 2;
auto A = (*this % tree[2 * v]).eval(tree, 2 * v, l, m);
auto B = (*this % tree[2 * v + 1]).eval(tree, 2 * v + 1, m, r);
A.insert(end(A), begin(B), end(B));
return A;
}
}
std::vector<T> eval(std::vector<T> x) { // evaluate polynomial in (x1, ..., xn)
int n = x.size();
if(is_zero()) {
return std::vector<T>(n, T(0));
}
std::vector<poly_t> tree(4 * n);
build(tree, 1, begin(x), end(x));
return eval(tree, 1, begin(x), end(x));
}
poly_t inter(std::vector<poly_t> &tree, int v, auto ly, auto ry) { // auxiliary interpolation function
if(ry - ly == 1) {
return {*ly / a[0]};
} else {
auto my = ly + (ry - ly) / 2;
auto A = (*this % tree[2 * v]).inter(tree, 2 * v, ly, my);
auto B = (*this % tree[2 * v + 1]).inter(tree, 2 * v + 1, my, ry);
return A * tree[2 * v + 1] + B * tree[2 * v];
}
}
static auto inter(std::vector<T> x, std::vector<T> y) { // interpolates minimum polynomial from (xi, yi) pairs
int n = x.size();
std::vector<poly_t> tree(4 * n);
return build(tree, 1, begin(x), end(x)).deriv().inter(tree, 1, begin(y), end(y));
}
static auto resultant(poly_t a, poly_t b) { // computes resultant of a and b
if(b.is_zero()) {
return 0;
} else if(b.deg() == 0) {
return bpow(b.lead(), a.deg());
} else {
int pw = a.deg();
a %= b;
pw -= a.deg();
auto mul = bpow(b.lead(), pw) * T((b.deg() & a.deg() & 1) ? -1 : 1);
auto ans = resultant(b, a);
return ans * mul;
}
}
static poly_t xk(size_t n) { // P(x) = x^n
return poly_t(T(1)).mul_xk(n);
}
static poly_t ones(size_t n) { // P(x) = 1 + x + ... + x^{n-1}
return std::vector<T>(n, 1);
}
static poly_t expx(size_t n) { // P(x) = e^x (mod x^n)
return ones(n).borel();
}
static poly_t log1px(size_t n) { // P(x) = log(1+x) (mod x^n)
std::vector<T> coeffs(n, 0);
for(size_t i = 1; i < n; i++) {
coeffs[i] = (i & 1 ? T(i).inv() : -T(i).inv());
}
return coeffs;
}
static poly_t log1mx(size_t n) { // P(x) = log(1-x) (mod x^n)
return -ones(n).integr();
}
// [x^k] (a corr b) = sum_{i} a{(k-m)+i}*bi
static poly_t corr(poly_t a, poly_t b) { // cross-correlation
return a * b.reverse();
}
// [x^k] (a semicorr b) = sum_i a{i+k} * b{i}
static poly_t semicorr(poly_t a, poly_t b) {
return corr(a, b).div_xk(b.deg());
}
poly_t invborel() const { // ak *= k!
auto res = *this;
for(int i = 0; i <= deg(); i++) {
res.coef(i) *= fact<T>(i);
}
return res;
}
poly_t borel() const { // ak /= k!
auto res = *this;
for(int i = 0; i <= deg(); i++) {
res.coef(i) *= rfact<T>(i);
}
return res;
}
poly_t shift(T a) const { // P(x + a)
return semicorr(invborel(), expx(deg() + 1).mulx(a)).borel();
}
poly_t x2() { // P(x) -> P(x^2)
std::vector<T> res(2 * a.size());
for(size_t i = 0; i < a.size(); i++) {
res[2 * i] = a[i];
}
return res;
}
// Return {P0, P1}, where P(x) = P0(x) + xP1(x)
std::array<poly_t, 2> bisect() const {
std::vector<T> res[2];
res[0].reserve(deg() / 2 + 1);
res[1].reserve(deg() / 2 + 1);
for(int i = 0; i <= deg(); i++) {
res[i % 2].push_back(a[i]);
}
return {res[0], res[1]};
}
// Find [x^k] P / Q
static T kth_rec(poly_t P, poly_t Q, int64_t k) {
while(k > Q.deg()) {
int n = Q.a.size();
auto [Q0, Q1] = Q.mulx(-1).bisect();
auto [P0, P1] = P.bisect();
int N = fft::com_size((n + 1) / 2, (n + 1) / 2);
auto Q0f = fft::dft(Q0.a, N);
auto Q1f = fft::dft(Q1.a, N);
auto P0f = fft::dft(P0.a, N);
auto P1f = fft::dft(P1.a, N);
if(k % 2) {
P = poly_t(Q0f * P1f) + poly_t(Q1f * P0f);
} else {
P = poly_t(Q0f * P0f) + poly_t(Q1f * P1f).mul_xk(1);
}
Q = poly_t(Q0f * Q0f) - poly_t(Q1f * Q1f).mul_xk(1);
k /= 2;
}
return (P * Q.inv(Q.deg() + 1))[k];
}
// inverse series mod x^n
poly_t inv(size_t n) const {
return poly::impl::inv(*this, n);
}
// [x^k]..[x^{k+n-1}] of inv()
// supports negative k if k+n >= 0
poly_t inv(int64_t k, size_t n) const {
return poly::impl::inv(*this, k, n);
}
// compute A(B(x)) mod x^n in O(n^2)
static poly_t compose(poly_t A, poly_t B, int n) {
int q = std::sqrt(n);
std::vector<poly_t> Bk(q);
auto Bq = B.pow(q, n);
Bk[0] = poly_t(T(1));
for(int i = 1; i < q; i++) {
Bk[i] = (Bk[i - 1] * B).mod_xk(n);
}
poly_t Bqk(1);
poly_t ans;
for(int i = 0; i <= n / q; i++) {
poly_t cur;
for(int j = 0; j < q; j++) {
cur += Bk[j] * A[i * q + j];
}
ans += (Bqk * cur).mod_xk(n);
Bqk = (Bqk * Bq).mod_xk(n);
}
return ans;
}
// compute A(B(x)) mod x^n in O(sqrt(pqn log^3 n))
// preferrable when p = deg A and q = deg B
// are much less than n
static poly_t compose_large(poly_t A, poly_t B, int n) {
if(B[0] != T(0)) {
return compose_large(A.shift(B[0]), B - B[0], n);
}
int q = std::sqrt(n);
auto [B0, B1] = std::make_pair(B.mod_xk(q), B.div_xk(q));
B0 = B0.div_xk(1);
std::vector<poly_t> pw(A.deg() + 1);
auto getpow = [&](int k) {
return pw[k].is_zero() ? pw[k] = B0.pow(k, n - k) : pw[k];
};
std::function<poly_t(poly_t const&, int, int)> compose_dac = [&getpow, &compose_dac](poly_t const& f, int m, int N) {
if(f.deg() <= 0) {
return f;
}
int k = m / 2;
auto [f0, f1] = std::make_pair(f.mod_xk(k), f.div_xk(k));
auto [A, B] = std::make_pair(compose_dac(f0, k, N), compose_dac(f1, m - k, N - k));
return (A + (B.mod_xk(N - k) * getpow(k).mod_xk(N - k)).mul_xk(k)).mod_xk(N);
};
int r = n / q;
auto Ar = A.deriv(r);
auto AB0 = compose_dac(Ar, Ar.deg() + 1, n);
auto Bd = B0.mul_xk(1).deriv();
poly_t ans = T(0);
std::vector<poly_t> B1p(r + 1);
B1p[0] = poly_t(T(1));
for(int i = 1; i <= r; i++) {
B1p[i] = (B1p[i - 1] * B1.mod_xk(n - i * q)).mod_xk(n - i * q);
}
while(r >= 0) {
ans += (AB0.mod_xk(n - r * q) * rfact<T>(r) * B1p[r]).mul_xk(r * q).mod_xk(n);
r--;
if(r >= 0) {
AB0 = ((AB0 * Bd).integr() + A[r] * fact<T>(r)).mod_xk(n);
}
}
return ans;
}
};
static auto operator * (const auto& a, const poly_t<auto>& b) {
return b * a;
}
};
#line 1 "cp-algorithms-aux/cp-algo/linalg/matrix.hpp"
#line 1 "cp-algorithms-aux/cp-algo/linalg/vector.hpp"
#line 7 "cp-algorithms-aux/cp-algo/linalg/vector.hpp"
#include <valarray>
#line 9 "cp-algorithms-aux/cp-algo/linalg/vector.hpp"
#include <iterator>
namespace cp_algo::linalg {
template<class vec, typename base>
struct valarray_base: std::valarray<base> {
using Base = std::valarray<base>;
using Base::Base;
valarray_base(base const& t): Base(t, 1) {}
auto begin() {return std::begin(*static_cast<Base*>(this));}
auto end() {return std::end(*static_cast<Base*>(this));}
auto begin() const {return std::begin(*static_cast<Base const*>(this));}
auto end() const {return std::end(*static_cast<Base const*>(this));}
bool operator == (vec const& t) const {return std::ranges::equal(*this, t);}
bool operator != (vec const& t) const {return !(*this == t);}
vec operator-() const {return Base::operator-();}
vec operator-(vec const& t) const {return Base::operator-(t);}
vec operator+(vec const& t) const {return Base::operator+(t);}
static vec from_range(auto const& R) {
vec res(std::ranges::distance(R));
std::ranges::copy(R, res.begin());
return res;
}
};
template<class vec, typename base>
struct vec_base: valarray_base<vec, base> {
using Base = valarray_base<vec, base>;
using Base::Base;
static vec ei(size_t n, size_t i) {
vec res(n);
res[i] = 1;
return res;
}
// Make sure the result is vec, not Base
vec operator*(base t) const {return Base::operator*(t);}
void add_scaled(vec const& b, base scale, size_t i = 0) {
assert(false);
for(; i < size(*this); i++) {
(*this)[i] += scale * b[i];
}
}
auto& normalize() {
return *this;
}
auto& normalize(size_t i) {
return (*this)[i];
}
void read() {
for(auto &it: *this) {
std::cin >> it;
}
}
void print() const {
std::ranges::copy(*this, std::ostream_iterator<base>(std::cout, " "));
std::cout << "\n";
}
static vec random(size_t n) {
vec res(n);
std::ranges::generate(res, random::rng);
return res;
}
// Concatenate vectors
vec operator |(vec const& t) const {
vec res(size(*this) + size(t));
res[std::slice(0, size(*this), 1)] = *this;
res[std::slice(size(*this), size(t), 1)] = t;
return res;
}
// Generally, vec shouldn't be modified
// after it's pivot index is set
std::pair<size_t, base> find_pivot() {
auto true_this = static_cast<vec*>(this);
if(pivot == size_t(-1)) {
pivot = 0;
while(pivot < size(*this) && true_this->normalize(pivot) == base(0)) {
pivot++;
}
if(pivot < size(*this)) {
pivot_inv = base(1) / (*this)[pivot];
}
}
return {pivot, pivot_inv};
}
void reduce_by(vec &t) {
auto true_this = static_cast<vec*>(this);
auto [pivot, pinv] = t.find_pivot();
if(pivot < size(*this)) {
true_this->add_scaled(t, -true_this->normalize(pivot) * pinv, pivot);
}
}
private:
size_t pivot = -1;
base pivot_inv;
};
template<typename base>
struct vec: vec_base<vec<base>, base> {
using Base = vec_base<vec<base>, base>;
using Base::Base;
};
template<int mod>
struct vec<algebra::modular<mod>>:
vec_base<vec<algebra::modular<mod>>, algebra::modular<mod>> {
using base = algebra::modular<mod>;
using Base = vec_base<vec<base>, base>;
using Base::Base;
void add_scaled(vec const& b, base scale, size_t i = 0) {
for(; i < size(*this); i++) {
(*this)[i].add_unsafe(scale.r * b[i].r);
}
if(++counter == 8) {
for(auto &it: *this) {
it.pseudonormalize();
}
counter = 0;
}
}
auto& normalize() {
for(auto &it: *this) {
it.normalize();
}
return *this;
}
auto& normalize(size_t i) {
return (*this)[i].normalize();
}
private:
size_t counter = 0;
};
}
#line 10 "cp-algorithms-aux/cp-algo/linalg/matrix.hpp"
#include <array>
namespace cp_algo::linalg {
template<typename base>
struct matrix: valarray_base<matrix<base>, vec<base>> {
using Base = valarray_base<matrix<base>, vec<base>>;
using Base::Base;
matrix(size_t n): Base(vec<base>(n), n) {}
matrix(size_t n, size_t m): Base(vec<base>(m), n) {}
size_t n() const {return size(*this);}
size_t m() const {return n() ? size(row(0)) : 0;}
auto dim() const {return std::array{n(), m()};}
auto& row(size_t i) {return (*this)[i];}
auto const& row(size_t i) const {return (*this)[i];}
matrix& operator *=(base t) {for(auto &it: *this) it *= t; return *this;}
matrix operator *(base t) const {return matrix(*this) *= t;}
// Make sure the result is matrix, not Base
matrix& operator*=(matrix const& t) {return *this = *this * t;}
void read() {
for(auto &it: *this) {
it.read();
}
}
void print() const {
for(auto const& it: *this) {
it.print();
}
}
static matrix eye(size_t n) {
matrix res(n);
for(size_t i = 0; i < n; i++) {
res[i][i] = 1;
}
return res;
}
// Concatenate matrices
matrix operator |(matrix const& b) const {
assert(n() == b.n());
matrix res(n(), m()+b.m());
for(size_t i = 0; i < n(); i++) {
res[i] = row(i) | b[i];
}
return res;
}
matrix submatrix(auto slicex, auto slicey) const {
matrix res = (*this)[slicex];
for(auto &row: res) {
row = vec<base>(row[slicey]);
}
return res;
}
matrix T() const {
matrix res(m(), n());
for(size_t i = 0; i < n(); i++) {
for(size_t j = 0; j < m(); j++) {
res[j][i] = row(i)[j];
}
}
return res;
}
matrix operator *(matrix const& b) const {
assert(m() == b.n());
matrix res(n(), b.m());
for(size_t i = 0; i < n(); i++) {
for(size_t j = 0; j < m(); j++) {
res[i].add_scaled(b[j], row(i)[j]);
}
}
return res.normalize();
}
vec<base> apply(vec<base> const& x) const {
return (matrix(x) * *this)[0];
}
matrix pow(uint64_t k) const {
assert(n() == m());
return bpow(*this, k, eye(n()));
}
static matrix random(size_t n, size_t m) {
matrix res(n, m);
std::ranges::generate(res, std::bind(vec<base>::random, m));
return res;
}
static matrix random(size_t n) {
return random(n, n);
}
matrix& normalize() {
for(auto &it: *this) {
it.normalize();
}
return *this;
}
enum Mode {normal, reverse};
template<Mode mode = normal>
auto gauss(size_t lim) {
size_t rk = 0;
std::vector<size_t> free, pivots;
for(size_t i = 0; i < lim; i++) {
for(size_t j = rk; j < n() && row(rk).normalize(i) == base(0); j++) {
if(row(j).normalize(i) != 0) {
row(rk) += row(j);
}
}
if(rk == n() || row(rk).normalize()[i] == base(0)) {
free.push_back(i);
} else {
pivots.push_back(i);
for(size_t j = (mode == normal) * rk; j < n(); j++) {
if(j != rk) {
row(j).reduce_by(row(rk));
}
}
rk += 1;
}
}
normalize();
return std::array{pivots, free};
}
template<Mode mode = normal>
auto gauss() {
return gauss<mode>(m());
}
size_t rank() const {
if(n() < m()) {
return T().rank();
}
return size(matrix(*this).gauss()[0]);
}
base det() const {
assert(n() == m());
matrix b = *this;
b.gauss();
base res = 1;
for(size_t i = 0; i < n(); i++) {
res *= b[i][i];
}
return res;
}
std::optional<matrix> inv() const {
assert(n() == m());
matrix b = *this | eye(n());
if(size(b.gauss<reverse>(n())[0]) < n()) {
return std::nullopt;
}
for(size_t i = 0; i < n(); i++) {
b[i] *= base(1) / b[i][i];
}
return b.submatrix(std::slice(0, n(), 1), std::slice(n(), n(), 1));
}
// Can also just run gauss on T() | eye(m)
// but it would be slower :(
auto kernel() const {
auto A = *this;
auto [pivots, free] = A.template gauss<reverse>();
matrix sols(size(free), m());
for(size_t j = 0; j < size(pivots); j++) {
base scale = base(1) / A[j][pivots[j]];
for(size_t i = 0; i < size(free); i++) {
sols[i][pivots[j]] = A[j][free[i]] * scale;
}
}
for(size_t i = 0; i < size(free); i++) {
sols[i][free[i]] = -1;
}
return sols;
}
// [solution, basis], transposed
std::optional<std::array<matrix, 2>> solve(matrix t) const {
matrix sols = (*this | t).kernel();
if(sols.n() < t.m() || sols.submatrix(
std::slice(sols.n() - t.m(), t.m(), 1),
std::slice(m(), t.m(), 1)
) != -eye(t.m())) {
return std::nullopt;
} else {
return std::array{
sols.submatrix(std::slice(sols.n() - t.m(), t.m(), 1),
std::slice(0, m(), 1)),
sols.submatrix(std::slice(0, sols.n() - t.m(), 1),
std::slice(0, m(), 1))
};
}
}
};
}
#line 7 "main.cpp"
#include <bits/stdc++.h>
using namespace std;
using namespace cp_algo::algebra;
using namespace cp_algo::linalg;
const int mod = 998244353;
using base = modular<mod>;
using polyn = poly_t<base>;
void solve() {
size_t n, q;
cin >> n >> q;
matrix<base> A(n);
A.read();
vector<vec<base>> basis;
auto x = vec<base>::random(n);
size_t degree = 0;
polyn ans = base((n % 2) ? -1 : 1);
while(size(basis) <= n) {
vec<base> y = x | vec<base>::ei(n + 1, size(basis));
for(auto &it: basis) {
y.reduce_by(it);
}
y.normalize();
if(vec<base>(y[slice(0, n, 1)]) == vec<base>(n)) {
vector<base> cur(begin(y) + n + size(basis) - degree,
begin(y) + n + size(basis) + 1);
ans *= polyn(cur);
degree = 0;
if(size(basis) < n) {
x = vec<base>::random(n);
} else {
break;
}
} else {
basis.push_back(y);
x = A.apply(x);
degree++;
}
}
#define MXITER 2000
vector<base> qs(MXITER);
while (q > 0) {
int v = (min((int) q, MXITER));
qs.resize(v);
for (int i = 0; i < v; i++) {
cin >> qs[i];
}
for (auto x : ans.eval(qs)) {
cout << x << " ";
}
q -= MXITER;
}
cout << endl;
}
signed main() {
//freopen("input.txt", "r", stdin);
ios::sync_with_stdio(0);
cin.tie(0);
int t = 1;
//cin >> t;
while(t--) {
solve();
}
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 0
Runtime Error
input:
3 6 2 4 5 6 3 8 1 6 3 10 9 5 8 3 1