QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#527597#8047. DFS Order 4afyAC ✓1006ms6704kbC++206.6kb2024-08-22 17:27:032024-08-22 17:27:03

Judging History

你现在查看的是最新测评结果

  • [2024-08-22 17:27:03]
  • 评测
  • 测评结果:AC
  • 用时:1006ms
  • 内存:6704kb
  • [2024-08-22 17:27:03]
  • 提交

answer

#include <bits/stdc++.h>

using namespace std;

using Int = long long;

template <class T1, class T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T>
ostream &operator<<(ostream &os, const vector<T> &as) {
    const int sz = as.size();
    os << "[";
    for (int i = 0; i < sz; ++i) {
        if (i >= 256) {
            os << ", ...";
            break;
        }
        if (i > 0) {
            os << ", ";
        }
        os << as[i];
    }
    return os << "]";
}
template <class T>
void pv(T a, T b) {
    for (T i = a; i != b; ++i) cerr << *i << " ";
    cerr << endl;
}
template <class T>
bool chmin(T &t, const T &f) {
    if (t > f) {
        t = f;
        return true;
    }
    return false;
}
template <class T>
bool chmax(T &t, const T &f) {
    if (t < f) {
        t = f;
        return true;
    }
    return false;
}
#define COLOR(s) ("\x1b[" s "m")

////////////////////////////////////////////////////////////////////////////////
// Barrett
struct ModInt {
    static unsigned M;
    static unsigned long long NEG_INV_M;
    static void setM(unsigned m) {
        M = m;
        NEG_INV_M = -1ULL / M;
    }
    unsigned x;
    ModInt() : x(0U) {}
    ModInt(unsigned x_) : x(x_ % M) {}
    ModInt(unsigned long long x_) : x(x_ % M) {}
    ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
    ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
    ModInt &operator+=(const ModInt &a) {
        x = ((x += a.x) >= M) ? (x - M) : x;
        return *this;
    }
    ModInt &operator-=(const ModInt &a) {
        x = ((x -= a.x) >= M) ? (x + M) : x;
        return *this;
    }
    ModInt &operator*=(const ModInt &a) {
        const unsigned long long y = static_cast<unsigned long long>(x) * a.x;
        const unsigned long long q = static_cast<unsigned long long>((static_cast<unsigned __int128>(NEG_INV_M) * y) >> 64);
        const unsigned long long r = y - M * q;
        x = r - M * (r >= M);
        return *this;
    }
    ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
    ModInt pow(long long e) const {
        if (e < 0)
            return inv().pow(-e);
        ModInt a = *this, b = 1U;
        for (; e; e >>= 1) {
            if (e & 1)
                b *= a;
            a *= a;
        }
        return b;
    }
    ModInt inv() const {
        unsigned a = M, b = x;
        int y = 0, z = 1;
        for (; b;) {
            const unsigned q = a / b;
            const unsigned c = a - q * b;
            a = b;
            b = c;
            const int w = y - static_cast<int>(q) * z;
            y = z;
            z = w;
        }
        assert(a == 1U);
        return ModInt(y);
    }
    ModInt operator+() const { return *this; }
    ModInt operator-() const {
        ModInt a;
        a.x = x ? (M - x) : 0U;
        return a;
    }
    ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
    ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
    ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
    ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
    template <class T>
    friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
    template <class T>
    friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
    template <class T>
    friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
    template <class T>
    friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
    explicit operator bool() const { return x; }
    bool operator==(const ModInt &a) const { return (x == a.x); }
    bool operator!=(const ModInt &a) const { return (x != a.x); }
    friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
unsigned ModInt::M;
unsigned long long ModInt::NEG_INV_M;
// !!!Use ModInt::setM!!!
////////////////////////////////////////////////////////////////////////////////

using Mint = ModInt;

constexpr int LIM_INV = 2010;
Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];

void prepare() {
    inv[1] = 1;
    for (int i = 2; i < LIM_INV; ++i) {
        inv[i] = -((Mint::M / i) * inv[Mint::M % i]);
    }
    fac[0] = invFac[0] = 1;
    for (int i = 1; i < LIM_INV; ++i) {
        fac[i] = fac[i - 1] * i;
        invFac[i] = invFac[i - 1] * inv[i];
    }
}
Mint binom(Int n, Int k) {
    if (n < 0) {
        if (k >= 0) {
            return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k);
        } else if (n - k >= 0) {
            return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k);
        } else {
            return 0;
        }
    } else {
        if (0 <= k && k <= n) {
            assert(n < LIM_INV);
            return fac[n] * invFac[k] * invFac[n - k];
        } else {
            return 0;
        }
    }
}

Mint interpolateIota(const vector<Mint> &fs, Mint x) {
    const int fsLen = fs.size();
    vector<Mint> prodR(fsLen + 1);
    prodR[fsLen] = 1;
    for (int i = fsLen; --i >= 0;) prodR[i] = (x - i) * prodR[i + 1];
    Mint ans = 0;
    Mint prodL = 1;
    for (int i = 0; i < fsLen; ++i) {
        // (i - 0) ... (i - (i - 1)) (i - (i + 1)) ... (i - (fsLen - 1))
        ans += invFac[i] * (((fsLen - 1 - i) & 1) ? -1 : +1) *
               invFac[fsLen - 1 - i] * fs[i] * prodL * prodR[i + 1];
        prodL *= (x - i);
    }
    return ans;
}

int N, P;
Mint F[810][810];

inline Mint get(int n, int y) {
    return F[n][y] - (1 - y) * F[n][0];
}

int main() {
    for (; ~scanf("%d%d", &N, &P);) {
        Mint::setM(P);
        prepare();

        --N;
        memset(F, 0, sizeof(F));
        for (int y = 0; y <= N + 1; ++y) {
            F[0][y] = 1;
        }
        for (int n = 0; n <= N; ++n) {
            for (int y = 1; y <= N + 1; ++y) {
                Mint sum = 0;
                sum += (1 - y) * inv[y] * get(n, y);
                for (int k = 0; k <= n; ++k) {
                    sum += F[n - k][y] * get(k, y);
                }
                F[n + 1][y] = inv[n + 1] * sum;
            }
            F[n + 1][0] = interpolateIota(vector<Mint>(F[n + 1] + 1, F[n + 1] + (N + 1 + 1)), -1);
            // if(n<=10){for(int y=0;y<=11;++y)cerr<<(fac[n+1]*F[n+1][y])<<" ";cerr<<endl;}
        }
        const Mint ans = fac[N] * F[N][0];
        printf("%u\n", ans.x);
    }
    return 0;
}

这程序好像有点Bug,我给组数据试试?

详细

Test #1:

score: 100
Accepted
time: 0ms
memory: 6464kb

input:

4 114514199

output:

2

result:

ok 1 number(s): "2"

Test #2:

score: 0
Accepted
time: 0ms
memory: 6416kb

input:

10 998244353

output:

11033

result:

ok 1 number(s): "11033"

Test #3:

score: 0
Accepted
time: 3ms
memory: 6408kb

input:

100 1000000007

output:

270904395

result:

ok 1 number(s): "270904395"

Test #4:

score: 0
Accepted
time: 849ms
memory: 6692kb

input:

756 1001338769

output:

901942543

result:

ok 1 number(s): "901942543"

Test #5:

score: 0
Accepted
time: 980ms
memory: 6412kb

input:

793 1009036033

output:

301770320

result:

ok 1 number(s): "301770320"

Test #6:

score: 0
Accepted
time: 860ms
memory: 6400kb

input:

759 1005587659

output:

846376219

result:

ok 1 number(s): "846376219"

Test #7:

score: 0
Accepted
time: 902ms
memory: 6416kb

input:

773 1007855479

output:

1398019

result:

ok 1 number(s): "1398019"

Test #8:

score: 0
Accepted
time: 774ms
memory: 6700kb

input:

751 1006730639

output:

321287237

result:

ok 1 number(s): "321287237"

Test #9:

score: 0
Accepted
time: 924ms
memory: 6400kb

input:

778 1007760653

output:

430322899

result:

ok 1 number(s): "430322899"

Test #10:

score: 0
Accepted
time: 996ms
memory: 6396kb

input:

798 1007543827

output:

688720826

result:

ok 1 number(s): "688720826"

Test #11:

score: 0
Accepted
time: 995ms
memory: 6396kb

input:

796 1004841413

output:

258829347

result:

ok 1 number(s): "258829347"

Test #12:

score: 0
Accepted
time: 913ms
memory: 6352kb

input:

775 1005185189

output:

744278608

result:

ok 1 number(s): "744278608"

Test #13:

score: 0
Accepted
time: 1006ms
memory: 6704kb

input:

800 1006012831

output:

508549367

result:

ok 1 number(s): "508549367"

Test #14:

score: 0
Accepted
time: 1ms
memory: 6480kb

input:

1 1001338769

output:

1

result:

ok 1 number(s): "1"

Test #15:

score: 0
Accepted
time: 1ms
memory: 6396kb

input:

2 1001338769

output:

1

result:

ok 1 number(s): "1"

Test #16:

score: 0
Accepted
time: 1ms
memory: 6396kb

input:

9 1009036033

output:

1780

result:

ok 1 number(s): "1780"

Test #17:

score: 0
Accepted
time: 0ms
memory: 6412kb

input:

14 1001338769

output:

43297358

result:

ok 1 number(s): "43297358"

Extra Test:

score: 0
Extra Test Passed