QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#525439#7521. Find the Gapmhw#WA 3ms3968kbC++235.1kb2024-08-20 16:38:192024-08-20 16:38:19

Judging History

你现在查看的是最新测评结果

  • [2024-08-20 16:38:19]
  • 评测
  • 测评结果:WA
  • 用时:3ms
  • 内存:3968kb
  • [2024-08-20 16:38:19]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

const double eps = 1e-8;
int sgn(double x) {
	if (fabs(x) < eps) return 0;
	if (x < 0) return -1;
	else return 1;
}
struct Point3 {
	double x, y, z;
	Point3(double _x = 0, double _y = 0, double _z = 0) 
	{
		x = _x;
		y = _y;
		z = _z;
	}
	void input() { cin >> x >> y >> z; }
	void output() { cout << fixed << setprecision(8) << x << " " << y << " " << z << '\n'; }
	bool operator==(const Point3 &b) const { return sgn(x - b.x) == 0 && sgn(y - b.y) == 0 && sgn(z - b.z) == 0; }
	bool operator<(const Point3 &b) const { return sgn(x - b.x) == 0 ? (sgn(y - b.y) == 0 ? sgn(z - b.z) < 0 : y < b.y) : x < b.x; }

	double len() { return sqrt(x * x + y * y + z * z); }
	double len2() { return x * x + y * y + z * z; }
	double distance(const Point3 &b) const { return sqrt((x - b.x) * (x - b.x) + (y - b.y) * (y - b.y) + (z - b.z) * (z - b.z)); }

	Point3 operator-(const Point3 &b) const { return Point3(x - b.x, y - b.y, z - b.z); }
	Point3 operator+(const Point3 &b) const { return Point3(x + b.x, y + b.y, z + b.z); }
	Point3 operator*(const double &k) const { return Point3(x * k, y * k, z * k); }
	Point3 operator/(const double &k) const { return Point3(x / k, y / k, z / k); }

	// 点乘
	double operator*(const Point3 &b) const { return x * b.x + y * b.y + z * b.z; }
	// 叉乘
	Point3 operator^(const Point3 &b) const { return Point3(y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y * b.x); }

	double rad(Point3 a, Point3 b)
	{
		Point3 p = (*this);
		return acos(((a - p) * (b - p)) / (a.distance(p) * b.distance(p)));
	}
	// 变换长度
	Point3 trunc(double r)
	{
		double l = len();
		if (!sgn(l)) return *this;
		r /= l;
		return Point3(x * r, y * r, z * r);
	}
};
struct Line3
{
	Point3 s, e;
	Line3() {}
	Line3(Point3 _s, Point3 _e)
	{
		s = _s;
		e = _e;
	}
	bool operator==(const Line3 v) { return (s == v.s) && (e == v.e); }
	void input()
	{
		s.input();
		e.input();
	}
	double length() { return s.distance(e); }
	// 点到直线距离
	double dispointtoline(Point3 p) { return ((e - s) ^ (p - s)).len() / s.distance(e); }
	// 点到线段距离
	double dispointtoseg(Point3 p)
	{
		if (sgn((p - s) * (e - s)) < 0 || sgn((p - e) * (s - e)) < 0)
			return min(p.distance(s), e.distance(p));
		return dispointtoline(p);
	}
	// 返回点p在直线上的投影
	Point3 lineprog(Point3 p)
	{
		return s + (((e - s) * ((e - s) * (p - s))) / ((e - s).len2()));
	}
	// p绕此向量逆时针arg角度
	Point3 rotate(Point3 p, double ang)
	{
		if (sgn(((s - p) ^ (e - p)).len()) == 0) return p;
		Point3 f1 = (e - s) ^ (p - s);
		Point3 f2 = (e - s) ^ (f1);
		double len = ((s - p) ^ (e - p)).len() / s.distance(e);
		f1 = f1.trunc(len);
		f2 = f2.trunc(len);
		Point3 h = p + f2;
		Point3 pp = h + f1;
		return h + ((p - h) * cos(ang)) + ((pp - h) * sin(ang));
	}
	// 点在直线上
	bool pointonseg(Point3 p)
	{
		return sgn(((s - p) ^ (e - p)).len()) == 0 && sgn((s - p) * (e - p)) == 0;
	}
};
struct Plane
{
	Point3 a, b, c, o; // 平面上的三个点,以及法向量
	Plane() {}
	Plane(Point3 _a, Point3 _b, Point3 _c)
	{
		a = _a;
		b = _b;
		c = _c;
		o = pvec();
	}
	Point3 pvec() { return (b - a) ^ (c - a); }
	// ax + by + cz + d = 0
	Plane(double _a, double _b, double _c, double _d)
	{
		o = Point3(_a, _b, _c);
		if (sgn(_a) != 0) a = Point3((-_d - _c - _b) / _a, 1, 1);
		else if (sgn(_b) != 0) a = Point3(1, (-_d - _c - _a) / _b, 1);
		else if (sgn(_c) != 0) a = Point3(1, 1, (-_d - _a - _b) / _c);
	}
	// 点在平面上的判断
	int pointonplane(Point3 p) { return sgn((p - a) * o); }
	// 两平面夹角
	double angleplane(Plane f) { return acos(o * f.o) / (o.len() * f.o.len()); }
	// 平面和直线的交点,返回值是交点个数
	int crossline(Line3 u, Point3 &p)
	{
		double x = o * (u.e - a);
		double y = o * (u.s - a);
		double d = x - y;
		if (sgn(d) == 0) return 0;
		p = ((u.s * x) - (u.e * y)) / d;
		return 1;
	}
	// 点到平面最近点(也就是投影)
	Point3 pointtoplane(Point3 p)
	{
		Line3 u = Line3(p, p + o);
		crossline(u, p);
		return p;
	}
	// 平面和平面的交线
	int crossplane(Plane f, Line3 &u)
	{
		Point3 oo = o ^ f.o;
		Point3 v = o ^ oo;
		double d = fabs(f.o * v);
		if (sgn(d) == 0) return 0;
		Point3 q = a + (v * (f.o * (f.a - a)) / d);
		u = Line3(q, q + oo);
		return 1;
	}
};
Point3 a[60];
int main()
{
	int n;cin>>n;
	double ans=1e18;
	for(int i=1;i<=n;i++) a[i].input();
	for(int i=1;i<=n;i++)
	{
		for(int j=i+1;j<=n;j++)
		{
			for(int k=j+1;k<=n;k++)
			{
				Line3 l={a[i],a[j]};
				if(sgn(l.dispointtoline(a[k]))==0) continue;

				Plane p=Plane(a[i],a[j],a[k]);
				double minn=1e18;
				int f=1;
				for(int o=1;o<=n;o++)
				{
					if(o==i||o==j||o==k) continue;
					int temp=p.pointonplane(a[o]);

					if(o==1) f=temp;
					else if(temp!=0&&f!=temp)
					{
						f=0;
						break;
					}
					
					if(temp==0) continue;
					double dis=a[o].distance(p.pointtoplane(a[o]));

					minn=min(minn,dis);
				}
				
				if(f!=0) ans=min(ans,minn); 
			}
		}
	}
	if(ans>1e16) ans=0;
	cout<<fixed<<setprecision(12)<<ans<<'\n';
}

詳細信息

Test #1:

score: 100
Accepted
time: 1ms
memory: 3868kb

input:

8
1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 2 1
2 2 2

output:

1.000000000000

result:

ok found '1.000000000', expected '1.000000000', error '0.000000000'

Test #2:

score: 0
Accepted
time: 1ms
memory: 3908kb

input:

5
1 1 1
1 2 1
1 1 2
1 2 2
2 1 1

output:

0.707106781187

result:

ok found '0.707106781', expected '0.707106781', error '0.000000000'

Test #3:

score: 0
Accepted
time: 1ms
memory: 3968kb

input:

50
973 1799 4431
1036 1888 4509
1099 1977 4587
1162 2066 4665
1225 2155 4743
1288 2244 4821
1351 2333 4899
1414 2422 4977
1540 2600 5133
1603 2689 5211
1666 2778 5289
1729 2867 5367
1792 2956 5445
1855 3045 5523
1918 3134 5601
1981 3223 5679
2044 3312 5757
2107 3401 5835
2170 3490 5913
2296 3668 606...

output:

0.000000000000

result:

ok found '0.000000000', expected '0.000000000', error '-0.000000000'

Test #4:

score: 0
Accepted
time: 1ms
memory: 3864kb

input:

50
4532 3245 1339
4624 3260 1345
4716 3275 1351
4808 3290 1357
4900 3305 1363
5084 3335 1375
5176 3350 1381
5268 3365 1387
5360 3380 1393
5452 3395 1399
5544 3410 1405
5728 3440 1417
5820 3455 1423
5912 3470 1429
6096 3500 1441
6188 3515 1447
6280 3530 1453
6372 3545 1459
6464 3560 1465
6556 3575 14...

output:

0.000000000000

result:

ok found '0.000000000', expected '0.000000000', error '-0.000000000'

Test #5:

score: 0
Accepted
time: 0ms
memory: 3864kb

input:

50
1 70 7443
1 138 5063
2 109 5971
3 23 8874
3 152 4359
4 59 7507
5 50 7715
5 73 6910
7 25 8376
7 103 5646
8 3 9039
9 83 6132
9 142 4067
10 124 4590
11 140 3923
12 168 2836
13 46 6999
13 84 5669
13 189 1994
13 229 594
15 171 2410
16 94 4998
20 38 6530
20 125 3485
21 78 5023
22 210 296
23 117 3444
25...

output:

0.000000000000

result:

ok found '0.000000000', expected '0.000000000', error '-0.000000000'

Test #6:

score: 0
Accepted
time: 3ms
memory: 3848kb

input:

50
1 95 5991
3 22 9019
25 103 5199
25 141 3603
38 103 4952
39 139 3421
59 6 8627
60 48 6844
66 33 7360
107 88 4271
109 188 33
112 177 438
114 107 3340
122 77 4448
123 169 565
127 1 7545
142 161 540
143 70 4343
146 153 800
156 129 1618
162 63 4276
162 150 622
166 93 2940
173 78 3437
180 143 574
189 1...

output:

0.000000000000

result:

ok found '0.000000000', expected '0.000000000', error '-0.000000000'

Test #7:

score: -100
Wrong Answer
time: 2ms
memory: 3864kb

input:

50
14 3658 1218
17 32 7984
741 1906 5773
755 8668 1019
834 2386 4591
1306 3866 7044
2304 2895 120
2450 8613 7374
2595 1919 2119
2610 9866 9419
2694 2845 2941
2838 2702 7608
2883 4143 4049
3082 4800 3611
3338 6703 9039
3424 2035 1863
3471 2672 5858
4339 1330 2029
4720 6970 4719
4853 387 5866
5415 975...

output:

0.288484828499

result:

wrong answer 1st numbers differ - expected: '9341.5658962', found: '0.2884848', error = '0.9999691'