QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#512366#9167. Coprime Arrayucup-team3877#WA 0ms3764kbC++2323.7kb2024-08-10 14:18:492024-08-10 14:18:52

Judging History

你现在查看的是最新测评结果

  • [2024-08-11 17:38:28]
  • hack成功,自动添加数据
  • (/hack/775)
  • [2024-08-10 14:18:52]
  • 评测
  • 测评结果:WA
  • 用时:0ms
  • 内存:3764kb
  • [2024-08-10 14:18:49]
  • 提交

answer

//line 1 "answer.cpp"
#if !__INCLUDE_LEVEL__
#include __FILE__
pair<bool, vector<ll>> solve(ll s, ll x) {
    ll so = s;
    vl ans;
    if (s % 2 == 1 && x % 2 == 0) {
        ans.push_back(1);
        s--;
    }
    auto p = prime_factor(x);
    uniq(p);
    debug(p);
    vl m, r1, r2;
    for (auto pi : p) {
        m.push_back(pi);
        ll total = s % pi;
        while (true) {
            ll i = randint(1, pi-1);
            ll j = smod(total - i, pi);
            if (i != 0 && j != 0) {
                r1.push_back(i);
                r2.push_back(j);
                break;
            }
        }
    }
    auto [a, m2] = atcoder::crt(r1, m);
    auto [b, m1] = atcoder::crt(r2, m);
    if (a - m1 > -powm(10, 9)) a -= m1;
    if (b - m2 > -powm(10, 9)) b -= m2;
    ll dif = ((s - a - b) / m1);
    ll mx = (powm(10, 9) - a) / m1;
    mx = min(dif, mx);
    a += mx * m1;
    b += (dif - mx) * m1;
    ans.push_back(a);
    ans.push_back(b);
    debug(ans);
    auto check = [&] () -> bool {
        if(sum(ans) != so) return false;
        rep(i, sz(ans)) {
            if(ans[i] < -pow(10, 9) || ans[i] > pow(10, 9)) return false;
            if(gcd(ans[i], x) != 1) return false;
        }
        return true;
    };
    if (!check()) return {false, {-1}};
    return {true, ans};
}
int main() {
    ll s,x; input(s, x);
    while (true) {
        auto [ok, ans] = solve(s, x);
        if (ok) {
            print(sz(ans));
            print(ans);
            break;
        }
    }
}
#else
//line 2 "/home/seekworser/.cpp_lib/competitive_library/competitive/std/std.hpp"
#include <bits/stdc++.h>
#ifndef LOCAL_TEST
#pragma GCC target ("avx")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#endif // LOCAL_TEST
using namespace std;
using std::cout;
// shorten typenames
using ll = long long;
using pii = pair<int, int>; using pll = pair<ll, ll>;
using vi = vector<int>;  using vvi = vector<vi>; using vvvi = vector<vvi>;
using vl = vector<ll>;  using vvl = vector<vl>; using vvvl = vector<vvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
using vs = vector<string>; using vvs = vector<vector<string>>; using vvvs = vector<vector<vector<string>>>;
template<typename T> vector<vector<T>> vv(int h, int w, T val = T()) { return vector(h, vector<T>(w, val)); }
template<typename T> vector<vector<vector<T>>> vvv(int h1, int h2, int h3, T val = T()) { return vector(h1, vector(h2, vector<T>(h3, val))); }
template<typename T> vector<vector<vector<vector<T>>>> vvvv(int h1, int h2, int h3, int h4, T val = T()) { return vector(h1, vector(h2, vector(h3, vector<T>(h4, val)))); }
template <class T> using priority_queue_min = priority_queue<T, vector<T>, greater<T>>;
// define CONSTANTS
constexpr double PI = 3.14159265358979323;
constexpr int INF = 100100111; constexpr ll INFL = 3300300300300300491LL;
float EPS = 1e-8; double EPSL = 1e-10;
template<typename T> bool eq(const T x, const T y) { return x == y; }
template<> bool eq<double>(const double x, const double y) { return (abs(x - y) < EPSL * x || abs(x - y) < EPSL); }
template<> bool eq<float>(const float x, const float y) { return abs(x - y) < EPS * x; }
template<typename T> bool neq(const T x, const T y) { return !(eq<T>(x, y)); }
template<typename T> bool ge(const T x, const T y) { return (eq<T>(x, y) || (x > y)); }
template<typename T> bool le(const T x, const T y) { return (eq<T>(x, y) || (x < y)); }
template<typename T> bool gt(const T x, const T y) { return !(le<T>(x, y)); }
template<typename T> bool lt(const T x, const T y) { return !(ge<T>(x, y)); }
constexpr int MODINT998244353 = 998244353;
constexpr int MODINT1000000007 = 1000000007;
// fasten io
struct Nyan { Nyan() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } nyan;
// define macros
#define all(a) (a).begin(), (a).end()
#define sz(x) ((ll)(x).size())
#define rep1(n) for(ll dummy_iter = 0LL; dummy_iter < n; ++dummy_iter) // 0,1,...,n-1
#define rep2(i, n) for(ll i = 0LL, i##_counter = 0LL; i##_counter < ll(n); ++(i##_counter), (i) = i##_counter) // i=0,1,...,n-1
#define rep3(i, s, t) for(ll i = ll(s), i##_counter = ll(s); i##_counter < ll(t); ++(i##_counter), (i) = (i##_counter)) // i=s,s+1,...,t-1
#define rep4(i, s, t, step) for(ll i##_counter = step > 0 ? ll(s) : -ll(s), i##_end = step > 0 ? ll(t) : -ll(t), i##_step = abs(step), i = ll(s); i##_counter < i##_end; i##_counter += i##_step, i = step > 0 ? i##_counter : -i##_counter) // i=s,s+step,...,<t
#define overload4(a, b, c, d, e, ...) e
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define repe(a, v) for(auto& a : (v)) // iterate over all elements in v
#define smod(n, m) ((((n) % (m)) + (m)) % (m))
#define sdiv(n, m) (((n) - smod(n, m)) / (m))
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());}
int Yes(bool b=true) { cout << (b ? "Yes\n" : "No\n"); return 0; };
int YES(bool b=true) { cout << (b ? "YES\n" : "NO\n"); return 0; };
int No(bool b=true) {return Yes(!b);};
int NO(bool b=true) {return YES(!b);};
template<typename T, size_t N> T max(array<T, N>& a) { return *max_element(all(a)); };
template<typename T, size_t N> T min(array<T, N>& a) { return *min_element(all(a)); };
template<typename T> T max(vector<T>& a) { return *max_element(all(a)); };
template<typename T> T min(vector<T>& a) { return *min_element(all(a)); };
template<typename T> vector<T> vec_slice(const vector<T>& a, int l, int r) { vector<T> rev; rep(i, l, r) rev.push_back(a[i]); return rev; };
template<typename T> T sum(vector<T>& a, T zero = T(0)) { T rev = zero; rep(i, sz(a)) rev += a[i]; return rev; };
template<typename T> bool in_range(const T& val, const T& s, const T& t) { return s <= val && val < t; };

template <class T> inline vector<T>& operator--(vector<T>& v) { repe(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repe(x, v) ++x; return v; }

ll powm(ll a, ll n, ll mod=INFL) {
    ll res = 1;
    while (n > 0) {
        if (n & 1) res = (res * a) % mod;
        if (n > 1) a = (a * a) % mod;
        n >>= 1;
    }
    return res;
}
ll sqrtll(ll x) {
    assert(x >= 0);
    ll rev = sqrt(x);
    while(rev * rev > x) --rev;
    while((rev+1) * (rev+1)<=x) ++rev;
    return rev;
}
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; }
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; }
int digit(ll x, int d=10) { int rev=0; while (x > 0) { rev++; x /= d;}; return rev; }
/**
 * @brief std.hpp
 * @docs docs/std/std.md
 */
//line 3 "/home/seekworser/.cpp_lib/competitive_library/competitive/random/random_base.hpp"
random_device seed_gen;
mt19937_64 engine(seed_gen());
ll randint(ll min, ll max) {
    assert(min <= max);
    return engine() % (max - min + 1) + min;
}
vl randvec(int n, ll min, ll max) {
    vl rev(n);
    rep(i, n) rev[i] = randint(min, max);
    return rev;
}
/**
 * @brief Random ベースライブラリ
 * @docs docs/random/random_base.md
 */
//line 3 "/home/seekworser/.cpp_lib/competitive_library/competitive/math/prime.hpp"
bool is_prime(ll n) {
    using u128 = __uint128_t;
    vector<u128> a_list = {2, 7, 61, 325, 9375, 28178, 450775, 9780504, 1795265022};
    if (n == 1) return false;
    if (n == 2) return true;
    if (n % 2 == 0) return false;
    ll r = 0;
    ll d = n - 1;
    while (!(d & 1)) {
        d >>= 1;
        r++;
    }
    ll cnt = 0;
    repe(a, a_list) {
        if (a >= n) continue;
        u128 res = 1;
        ll di = d;
        while (di > 0) {
            if (di & 1) res = (res * a) % n;
            if (di > 1) a = (a * a) % n;
            di >>= 1;
        }
        if (res == 1) continue;
        bool valid = false;
        rep(i, r) {
            if (res == n - 1) valid = true;
            res = (res * res) % n;
        }
        if (!valid) return false;
    }
    return true;
}

template <class T> vector<T> divisor(T n, bool sorted=true) {
    vector<T> ans(0);
    for (T i = 1; i <= (T)std::sqrt(n); i++) {
        if (n % i == 0) {
            ans.push_back(i);
            if (i * i != n) ans.push_back(n / i);
        }
    }
    if (sorted) sort(ans.begin(), ans.end());
    return ans;
};
template <class T> vector<T> prime_factor(T n) {
    vector<T> ans(0);
    for (T i = 2; i <= (T)std::sqrt(n); i++) {
        while (n % i == 0) {
            ans.push_back(i);
            n /= i;
        }
    }
    if (n != 1) ans.push_back(n);
    return ans;
};
template <class T> map<T, T> prime_factor_c(T n) {
    map<T, T> ans;
    for (T i = 2; i <= (T)std::sqrt(n); i++) {
        while (n % i == 0) {
            ans[i] += 1;
            n /= i;
        }
    }
    if (n != 1) ans[n] += 1;
    return ans;
};
template <class T> vector<T> primes(T n) {
    vector<T> ans(0);
    if (n < 2) return ans;
    vector<bool> is_primev(n+1, true);
    is_primev.at(0) = is_primev.at(1) = false;
    for (T i = 2; i <= (T)std::sqrt(n); i++) {
        if (!is_primev.at(i)) continue;
        for (T j = i*2; j <= n; j+=i) is_primev.at(j) = false;
    }
    for (T i = 2; i <= n; i++) {
        if (is_primev.at(i)) ans.push_back(i);
    }
    return ans;
};
template <class T> vector<T> segment_seive(T s, T t) {
    vector<T> ans(0);
    if (t < 2 || s < 0 || s >= t) return ans;
    vector<bool> is_prime_small((T)std::sqrt(t)+1, true);
    vector<bool> is_prime_large(t-s, true);
    for (T i = 2; i <= (T)std::sqrt(t); i++) {
        if (!is_prime_small.at(i)) continue;
        for (T j = i*2; j*j < t; j+=i) is_prime_small.at(j) = false;
        for (T j = max(2*i, ((s+i-1)/i)*i); j < t; j+=i) is_prime_large.at(j-s) = false;
    }
    for (T i=0; i < t-s; i++) {
        if (is_prime_large.at(i) && s+i != 1) ans.push_back(s+i);
    }
    return ans;
};
/**
 * @brief prime.hpp
 * @docs docs/math/prime.md
 */
//line 6 "/home/seekworser/.cpp_lib/competitive_library/atcoder/math.hpp"

//line 3 "/home/seekworser/.cpp_lib/competitive_library/atcoder/internal_math.hpp"

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder
//line 8 "/home/seekworser/.cpp_lib/competitive_library/atcoder/math.hpp"

namespace atcoder {

long long pow_mod(long long x, long long n, int m) {
    assert(0 <= n && 1 <= m);
    if (m == 1) return 0;
    internal::barrett bt((unsigned int)(m));
    unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m));
    while (n) {
        if (n & 1) r = bt.mul(r, y);
        y = bt.mul(y, y);
        n >>= 1;
    }
    return r;
}

long long inv_mod(long long x, long long m) {
    assert(1 <= m);
    auto z = internal::inv_gcd(x, m);
    assert(z.first == 1);
    return z.second;
}

// (rem, mod)
std::pair<long long, long long> crt(const std::vector<long long>& r,
                                    const std::vector<long long>& m) {
    assert(r.size() == m.size());
    int n = int(r.size());
    // Contracts: 0 <= r0 < m0
    long long r0 = 0, m0 = 1;
    for (int i = 0; i < n; i++) {
        assert(1 <= m[i]);
        long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i];
        if (m0 < m1) {
            std::swap(r0, r1);
            std::swap(m0, m1);
        }
        if (m0 % m1 == 0) {
            if (r0 % m1 != r1) return {0, 0};
            continue;
        }
        // assume: m0 > m1, lcm(m0, m1) >= 2 * max(m0, m1)

        // (r0, m0), (r1, m1) -> (r2, m2 = lcm(m0, m1));
        // r2 % m0 = r0
        // r2 % m1 = r1
        // -> (r0 + x*m0) % m1 = r1
        // -> x*u0*g = r1-r0 (mod u1*g) (u0*g = m0, u1*g = m1)
        // -> x = (r1 - r0) / g * inv(u0) (mod u1)

        // im = inv(u0) (mod u1) (0 <= im < u1)
        long long g, im;
        std::tie(g, im) = internal::inv_gcd(m0, m1);

        long long u1 = (m1 / g);
        // |r1 - r0| < (m0 + m1) <= lcm(m0, m1)
        if ((r1 - r0) % g) return {0, 0};

        // u1 * u1 <= m1 * m1 / g / g <= m0 * m1 / g = lcm(m0, m1)
        long long x = (r1 - r0) / g % u1 * im % u1;

        // |r0| + |m0 * x|
        // < m0 + m0 * (u1 - 1)
        // = m0 + m0 * m1 / g - m0
        // = lcm(m0, m1)
        r0 += x * m0;
        m0 *= u1;  // -> lcm(m0, m1)
        if (r0 < 0) r0 += m0;
    }
    return {r0, m0};
}

long long floor_sum(long long n, long long m, long long a, long long b) {
    assert(0 <= n && n < (1LL << 32));
    assert(1 <= m && m < (1LL << 32));
    unsigned long long ans = 0;
    if (a < 0) {
        unsigned long long a2 = internal::safe_mod(a, m);
        ans -= 1ULL * n * (n - 1) / 2 * ((a2 - a) / m);
        a = a2;
    }
    if (b < 0) {
        unsigned long long b2 = internal::safe_mod(b, m);
        ans -= 1ULL * n * ((b2 - b) / m);
        b = b2;
    }
    return ans + internal::floor_sum_unsigned(n, m, a, b);
}

}  // namespace atcoder
//line 3 "/home/seekworser/.cpp_lib/competitive_library/competitive/std/io.hpp"
// overload operators (prototypes)
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p);
template <class T> inline istream& operator>>(istream& is, vector<T>& v);
template <class T, class U> inline ostream& operator<<(ostream& os, const pair<T, U>& p);
template <class T> inline ostream& operator<<(ostream& os, const vector<T>& v);
template <typename T, typename S> ostream &operator<<(ostream &os, const map<T, S> &mp);
template <typename T> ostream &operator<<(ostream &os, const set<T> &st);
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &st);
template <typename T> ostream &operator<<(ostream &os, const unordered_set<T> &st);
template <typename T> ostream &operator<<(ostream &os, queue<T> q);
template <typename T> ostream &operator<<(ostream &os, deque<T> q);
template <typename T> ostream &operator<<(ostream &os, stack<T> st);
template <class T, class Container, class Compare> ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq);

// overload operators
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repe(x, v) is >> x; return is; }
template <class T, class U> inline ostream& operator<<(ostream& os, const pair<T, U>& p) { os << p.first << " " << p.second; return os; }
template <class T> inline ostream& operator<<(ostream& os, const vector<T>& v) { rep(i, sz(v)) { os << v.at(i); if (i != sz(v) - 1) os << " "; } return os; }
template <typename T, typename S> ostream &operator<<(ostream &os, const map<T, S> &mp) { for (auto &[key, val] : mp) { os << key << ":" << val << " "; } return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &st) { auto itr = st.begin(); for (int i = 0; i < (int)st.size(); i++) { os << *itr << (i + 1 != (int)st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &st) { auto itr = st.begin(); for (int i = 0; i < (int)st.size(); i++) { os << *itr << (i + 1 != (int)st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_set<T> &st) { ll cnt = 0; for (auto &e : st) { os << e << (++cnt != (int)st.size() ? " " : ""); } return os; }
template <typename T> ostream &operator<<(ostream &os, queue<T> q) { while (q.size()) { os << q.front() << " "; q.pop(); } return os; }
template <typename T> ostream &operator<<(ostream &os, deque<T> q) { while (q.size()) { os << q.front(); q.pop_front(); if (q.size()) os << " "; } return os; }
template <typename T> ostream &operator<<(ostream &os, stack<T> st) { while (st.size()) { os << st.top() << " "; st.pop(); } return os; }
template <class T, class Container, class Compare> ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq) { while (pq.size()) { os << pq.top() << " "; pq.pop(); } return os; }

template <typename T> int print_sep_end(string sep, string end, const T& val) { (void)sep; cout << val << end; return 0; };
template <typename T1, typename... T2> int print_sep_end(string sep, string end, const T1 &val, const T2 &...remain) {
    cout << val << sep;
    print_sep_end(sep, end, remain...);
    return 0;
};
template <typename... T> int print(const T &...args) { print_sep_end(" ", "\n", args...); return 0; };
template <typename... T> void flush() { cout << flush; };
template <typename... T> int print_and_flush(const T &...args) { print(args...); flush(); return 0; };
#define debug(...) debug_func(0, #__VA_ARGS__, __VA_ARGS__) // debug print
template <typename T> void input(T &a) { cin >> a; };
template <typename T1, typename... T2> void input(T1&a, T2 &...b) { cin >> a; input(b...); };
#ifdef LOCAL_TEST
template <typename T> void debug_func(int i, const T name) { (void)i; (void)name; cerr << endl; }
template <typename T1, typename T2, typename... T3> void debug_func(int i, const T1 &name, const T2 &a, const T3 &...b) {
    int scope = 0;
    for ( ; (scope != 0 || name[i] != ',') && name[i] != '\0'; i++ ) {
        cerr << name[i];
        if (name[i] == '(' || name[i] == '{') scope++;
        if (name[i] == ')' || name[i] == '}') scope--;
    }
    cerr << ":" << a << " ";
    debug_func(i + 1, name, b...);
}
template <typename T1, typename T2, typename... T3> void debug_func(int i, const T1 &name, T2 &a, T3 &...b) {
    int scope = 0;
    for ( ; (scope != 0 || name[i] != ',') && name[i] != '\0'; i++ ) {
        cerr << name[i];
        if (name[i] == '(' || name[i] == '{') scope++;
        if (name[i] == ')' || name[i] == '}') scope--;
    }
    cerr << ":" << a << " ";
    debug_func(i + 1, name, b...);
}
#endif
#ifndef LOCAL_TEST
template <typename... T>
void debug_func(T &...) {}
template <typename... T>
void debug_func(const T &...) {}
#endif
/**
 * @brief io.hpp
 * @docs docs/std/io.md
 */
//line 67 "answer.cpp"
#endif

详细

Test #1:

score: 100
Accepted
time: 0ms
memory: 3612kb

input:

9 6

output:

3
1 13 -5

result:

ok Correct

Test #2:

score: 0
Accepted
time: 0ms
memory: 3612kb

input:

14 34

output:

2
41 -27

result:

ok Correct

Test #3:

score: 0
Accepted
time: 0ms
memory: 3548kb

input:

1000000000 223092870

output:

2
924766949 75233051

result:

ok Correct

Test #4:

score: 0
Accepted
time: 0ms
memory: 3764kb

input:

2 1000000000

output:

2
11 -9

result:

ok Correct

Test #5:

score: 0
Accepted
time: 0ms
memory: 3620kb

input:

649557664 933437700

output:

2
649681523 -123859

result:

ok Correct

Test #6:

score: 0
Accepted
time: 0ms
memory: 3540kb

input:

33396678 777360870

output:

2
34771541 -1374863

result:

ok Correct

Test #7:

score: 0
Accepted
time: 0ms
memory: 3756kb

input:

48205845 903124530

output:

3
1 48244177 -38333

result:

ok Correct

Test #8:

score: 0
Accepted
time: 0ms
memory: 3684kb

input:

251037078 505905400

output:

2
251138469 -101391

result:

ok Correct

Test #9:

score: 0
Accepted
time: 0ms
memory: 3592kb

input:

30022920 172746860

output:

2
30252463 -229543

result:

ok Correct

Test #10:

score: 0
Accepted
time: 0ms
memory: 3564kb

input:

63639298 808058790

output:

2
63647267 -7969

result:

ok Correct

Test #11:

score: 0
Accepted
time: 0ms
memory: 3756kb

input:

76579017 362768406

output:

3
1 77466061 -887045

result:

ok Correct

Test #12:

score: 0
Accepted
time: 0ms
memory: 3616kb

input:

40423669 121437778

output:

3
1 40426261 -2593

result:

ok Correct

Test #13:

score: 0
Accepted
time: 0ms
memory: 3512kb

input:

449277309 720915195

output:

2
449339507 -62198

result:

ok Correct

Test #14:

score: 0
Accepted
time: 0ms
memory: 3676kb

input:

81665969 919836918

output:

3
1 81734021 -68053

result:

ok Correct

Test #15:

score: 0
Accepted
time: 0ms
memory: 3592kb

input:

470578680 280387800

output:

2
470578831 -151

result:

ok Correct

Test #16:

score: 0
Accepted
time: 0ms
memory: 3564kb

input:

58450340 803305503

output:

2
58505632 -55292

result:

ok Correct

Test #17:

score: 0
Accepted
time: 0ms
memory: 3604kb

input:

125896113 323676210

output:

3
1 125932051 -35939

result:

ok Correct

Test #18:

score: 0
Accepted
time: 0ms
memory: 3608kb

input:

381905348 434752500

output:

2
381906211 -863

result:

ok Correct

Test #19:

score: -100
Wrong Answer
time: 0ms
memory: 3612kb

input:

78916498 653897673

output:

2
79031081 -114583

result:

wrong answer Jury's answer is better than participant's