QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#505163 | #7178. Bishops | Esouling | WA | 15ms | 5320kb | C++20 | 1.9kb | 2024-08-04 20:57:30 | 2024-08-04 20:57:31 |
Judging History
answer
#include <bits/stdc++.h>
using loint = long long;
using db = double;
void solve() {
int n, m;
std::cin >> n >> m;
int inv = 0;
if (n > m) {
std::swap(n, m);
inv = 1;
}
std::vector<std::pair<int, int>> ans;
if (n == m) {
for (int i = 1; i <= n; i ++) {
ans.push_back({i, 1});
}
for (int i = 2; i <= n - 1; i ++) {
ans.push_back({i, m});
}
} else if (n & 1) {
for (int i = 1; i <= n; i ++) {
ans.push_back({i, 1});
}
for (int i = 1; i <= n; i ++) {
ans.push_back({i, m});
}
int l = n / 2 + 2, r = m - (n / 2 + 1);
for (int j = l; j <= r; j ++) {
ans.push_back({n / 2 + 1, j});
}
} else {
for (int i = 1; i <= n; i ++) {
ans.push_back({i, 1});
}
for (int i = 1; i <= n; i ++) {
ans.push_back({i, m});
}
int l = n / 2 + 2, r = m - (n / 2 + 1);
for (int j = l; j < n / 2; j += 2) {
ans.push_back({n / 2, j});
ans.push_back({n / 2 + 1, j});
}
for (int j = r; j >= n / 2 + 1; j -= 2) {
ans.push_back({n / 2, j});
ans.push_back({n / 2 + 1, j});
}
}
std::cout << ans.size() << '\n';
// std::vector a(n + 5, std::vector<int> (m + 5, 0));
for (auto &[x, y] : ans) {
if (inv) std::swap(x, y);
// a[x][y] = 1;
std::cout << x << ' ' << y << '\n';
}
// for (int i = 1; i <= n; i ++) {
// for (int j = 1; j <= m; j ++) {
// std::cerr << a[i][j] << " \n"[j == m];
// }
// }
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
solve();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3748kb
input:
2 5
output:
6 1 1 2 1 1 5 2 5 1 3 2 3
result:
ok n: 2, m: 5, bishops: 6
Test #2:
score: 0
Accepted
time: 0ms
memory: 3600kb
input:
5 5
output:
8 1 1 2 1 3 1 4 1 5 1 2 5 3 5 4 5
result:
ok n: 5, m: 5, bishops: 8
Test #3:
score: 0
Accepted
time: 10ms
memory: 5232kb
input:
100000 100000
output:
199998 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61...
result:
ok n: 100000, m: 100000, bishops: 199998
Test #4:
score: 0
Accepted
time: 15ms
memory: 5140kb
input:
100000 99999
output:
199998 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 ...
result:
ok n: 100000, m: 99999, bishops: 199998
Test #5:
score: -100
Wrong Answer
time: 8ms
memory: 5320kb
input:
100000 50000
output:
150000 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 ...
result:
wrong answer Sum diagonals are not distinct