QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#499378 | #6726. Turn It Off | Railgun2334 | WA | 31ms | 4316kb | C++20 | 2.9kb | 2024-07-31 13:32:21 | 2024-07-31 13:32:21 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define re read()
#define MOD 998244353
#define i128 __int128
#define pll pair<ll,ll>
#define pii pair<int,int>
#define ull unsigned long long
#define INF 9223372036854775800
#define fr(i, x, y) for (int i = x, p = y; i <= p; ++i)
#define rp(i, x, y) for (int i = x, p = y; i >= p; --i)
#define Timeok ((double)clock() / CLOCKS_PER_SEC < MAX_TIME)
const double MAX_TIME = 1.0 - 0.0032;
inline ll read() {
ll x = 0, f = 0;
char ch = getchar();
while (!isdigit(ch))
f |= (ch == '-'), ch = getchar();
while (isdigit(ch))
x = (x << 1) + (x << 3) + (ch ^= 48), ch = getchar();
return f ? -x : x;
}
void write(i128 x) {
if (x < 0)
putchar('-'), x = -x;
if (x > 9)
write(x / 10);
putchar(x % 10 + 48);
}
inline void W(i128 x, char ch) {
write(x);
putchar(ch);
}
ll ksm(ll a, ll b, ll mod) { //快速幂mod
a %= mod;
ll res = 1;
while (b > 0)
{
if (b & 1)
res = res * a & mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
ll ksm(ll a, ll b) { //快速幂
ll res = 1;
while (b > 0)
{
if (b & 1)res = res * a;
a = a * a;
b >>= 1;
}
return res;
}
pii fib(ll n) { //计算第n和n+1位斐波那契数
if (n == 0)return{ 0,1 };
auto p = fib(n >> 1);
ll c = p.first * (2 * p.second - p.first);
ll d = p.first * p.first + p.second * p.second;
if (n & 1)
return { d,c + d };
else
return { c,d };
}
ll exgcd(ll a, ll b, ll& x, ll& y) { //扩展欧几里得
ll x1 = 1, x2 = 0, x3 = 0, x4 = 1;
while (b != 0) {
ll c = a / b;
std::tie(x1, x2, x3, x4, a, b) =
std::make_tuple(x3, x4, x1 - x3 * c, x2 - x4 * c, b, a - b * c);
}
x = x1, y = x2;
return a;
}
bool liEu(ll a, ll b, ll c, ll& x, ll& y) { //线性同余方程
ll d = exgcd(a, b, x, y);
if (c % d != 0) return 0;
ll k = c / d;
x *= k;
y *= k;
return 1;
}
ll r[105]; //取模数
ll CRT(int k, ll* a, ll* r) { //中国剩余定理
ll n = 1, ans = 0;
for (int i = 1; i <= k; i++) n = n * r[i];
for (int i = 1; i <= k; i++) {
ll m = n / r[i], b, y;
exgcd(m, r[i], b, y); // b * m mod r[i] = 1
ans = (ans + a[i] * m * b % n) % n;
}
return (ans % n + n) % n;
}
/*
ll Lucas(ll n, ll m, ll p) {
if (m == 0) return 1;
return (C(n % p, m % p, p) * Lucas(n / p, m / p, p)) % p;
}*/
int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
int lcm(int a, int b) {
return a * b / gcd(a, b);
}
/*------------C-O-D-E------------*/
const int N = 1e5 + 4;
//int n, m, M, mod=998244353;
int a[114514];
void solve()
{
int n,k;
int sum=0;
int ans=1;
cin>>n>>k;
string s;
cin>>s;
for(int i=0;i<n;i++)
{
if(s[i]=='1')
{
a[++sum]=i+1;
}
}
for(int i=2;i<=sum;i+=k)
{
ans=max(ans,a[i]-a[i-1]+1);
}
cout<<ans<<endl;
}
int main()
{
ll T = 1;
cin>>T;
while (T--)
{
solve();
}
}
詳細信息
Test #1:
score: 100
Accepted
time: 0ms
memory: 3564kb
input:
2 10 4 0101011111 3 1 010
output:
3 1
result:
ok 2 number(s): "3 1"
Test #2:
score: -100
Wrong Answer
time: 31ms
memory: 4316kb
input:
1109 47 36 11101110101001111110101101100001000011101001011 6 5 100010 35 26 00011111000000101010011010100101111 71 45 11101001000111011101101000000000010001100100110000001000011011001011000 32 23 00000100011110010101000110010110 36 30 110110000000000011010001100011111100 21 8 010000011010011101100 9...
output:
2 5 2 2 5 2 7 3 3 3 2 3 3 2 2 2 2 2 2 2 2 3 5 5 5 2 2 1 2 4 2 2 3 4 5 6 2 3 3 6 2 3 2 2 7 3 1 3 3 6 2 2 2 2 3 2 2 2 3 6 8 4 3 3 9 5 4 2 5 4 2 2 6 5 9 2 1 3 2 3 6 2 5 8 4 2 3 2 2 6 3 3 3 6 2 2 3 3 3 4 5 1 2 2 2 8 2 2 5 2 1 6 2 3 2 3 3 2 2 13 2 5 6 4 2 4 2 6 4 5 2 2 4 2 2 2 2 8 2 5 3 5 2 3 2 2 2 2 2 3...
result:
wrong answer 1st numbers differ - expected: '1', found: '2'