QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#498964#6116. Changing the Sequencescocoa_chan#TL 98ms14460kbC++175.6kb2024-07-30 22:19:512024-07-30 22:19:53

Judging History

你现在查看的是最新测评结果

  • [2024-07-30 22:19:53]
  • 评测
  • 测评结果:TL
  • 用时:98ms
  • 内存:14460kb
  • [2024-07-30 22:19:51]
  • 提交

answer

#include<bits/stdc++.h>
using namespace std;
typedef long long int ll;
const int N = 3e5 + 9;
using T = long long;
const T inf = 1LL << 61;
struct MCMF {
  struct edge {
    int u, v;
    T cap, cost;
    int id;
    edge(int _u, int _v, T _cap, T _cost, int _id) {
      u = _u;
      v = _v;
      cap = _cap;
      cost = _cost;
      id = _id;
    }
  };
  int n, s, t, mxid;
  T flow, cost;
  vector<vector<int>> g;
  vector<edge> e;
  vector<T> d, potential, flow_through;
  vector<int> par;
  bool neg;
  void clear(ll N)
  {
      n=N+10;
      s=0;
      t=0;
      mxid=0;
      flow=0;
      cost=0;
      g.clear();
      e.clear();
      d.clear();
      potential.clear();
      flow_through.clear();
      par.clear();
      neg=false;
      g.assign(n, vector<int> ());
  }
  MCMF() {}
  MCMF(int _n) { // 0-based indexing
    n = _n + 10;
    g.assign(n, vector<int> ());
    neg = false;
    mxid = 0;
  }
  void add_edge(int u, int v, T cap, T cost, int id = -1, bool directed = true) {
    if(cost < 0) neg = true;
    g[u].push_back(e.size());
    e.push_back(edge(u, v, cap, cost, id));
    g[v].push_back(e.size());
    e.push_back(edge(v, u, 0, -cost, -1));
    mxid = max(mxid, id);
    if(!directed) add_edge(v, u, cap, cost, -1, true);
  }
  bool dijkstra() {
    par.assign(n, -1);
    d.assign(n, inf);
    priority_queue<pair<T, T>, vector<pair<T, T>>, greater<pair<T, T>> > q;
    d[s] = 0;
    q.push(pair<T, T>(0, s));
    while (!q.empty()) {
      int u = q.top().second;
      T nw = q.top().first;
      q.pop();
      if(nw != d[u]) continue;
      for (int i = 0; i < (int)g[u].size(); i++) {
        int id = g[u][i];
        int v = e[id].v;
        T cap = e[id].cap;
        T w = e[id].cost + potential[u] - potential[v];
        if (d[u] + w < d[v] && cap > 0) {
          d[v] = d[u] + w;
          par[v] = id;
          q.push(pair<T, T>(d[v], v));
        }
      }
    }
    for (int i = 0; i < n; i++) {
      if (d[i] < inf) d[i] += (potential[i] - potential[s]);
    }
    for (int i = 0; i < n; i++) {
      if (d[i] < inf) potential[i] = d[i];
    }
    return d[t] != inf; // for max flow min cost
    // return d[t] <= 0; // for min cost flow
  }
  T send_flow(int v, T cur) {
    if(par[v] == -1) return cur;
    int id = par[v];
    int u = e[id].u;
    T w = e[id].cost;
    T f = send_flow(u, min(cur, e[id].cap));
    cost += f * w;
    e[id].cap -= f;
    e[id ^ 1].cap += f;
    return f;
  }
  //returns {maxflow, mincost}
  pair<T, T> solve(int _s, int _t, T goal = inf) {
    s = _s;
    t = _t;
    flow = 0, cost = 0;
    potential.assign(n, 0);
    if (neg) {
      // Run Bellman-Ford to find starting potential on the starting graph
      // If the starting graph (before pushing flow in the residual graph) is a DAG,
      // then this can be calculated in O(V + E) using DP:
      // potential(v) = min({potential[u] + cost[u][v]}) for each u -> v and potential[s] = 0
      d.assign(n, inf);
      d[s] = 0;
      bool relax = true;
      for (int i = 0; i < n && relax; i++) {
        relax = false;
        for (int u = 0; u < n; u++) {
          for (int k = 0; k < (int)g[u].size(); k++) {
            int id = g[u][k];
            int v = e[id].v;
            T cap = e[id].cap, w = e[id].cost;
            if (d[v] > d[u] + w && cap > 0) {
              d[v] = d[u] + w;
              relax = true;
            }
          }
        }
      }
      for(int i = 0; i < n; i++) if(d[i] < inf) potential[i] = d[i];
    }
    while (flow < goal && dijkstra()) flow += send_flow(t, goal - flow);
    flow_through.assign(mxid + 10, 0);
    for (int u = 0; u < n; u++) {
      for (auto v : g[u]) {
        if (e[v].id >= 0) flow_through[e[v].id] = e[v ^ 1].cap;
      }
    }
    return make_pair(flow, cost);
  }
};
MCMF dinic(600);
ll n,m,i,j,k,l,r,x,y,z,w,s,t,a[1100000],b[1100000],c[1100000],d[1100000],perm[1100000],adj[1100][1100];
void construct_dinic(ll x,ll y)
{
    ll i,j;
    for(i=1;i<=m;i++)
    {
        dinic.add_edge(1,i+1,1,0);
        dinic.add_edge(i+m+1,500,1,0);
    }
    for(i=1;i<=m;i++)
    {
        for(j=1;j<=m;j++)
        {
            if((i==x&&j==y)||perm[i]==j)
                dinic.add_edge(i+1,j+m+1,1,-adj[i][j]-10000000);
            else
                dinic.add_edge(i+1,j+m+1,1,-adj[i][j]);
        }
    }
}
int main()
{
    scanf("%lld %lld",&n,&m);
    for(i=1;i<=n;i++)
    {
        scanf("%lld",&a[i]);
    }
    for(i=1;i<=n;i++)
    {
        scanf("%lld",&b[i]);
    }
    for(j=1;j<=m;j++)
    {
        dinic.add_edge(1,j+1,1,0);
        dinic.add_edge(j+m+1,500,1,0);
        for(i=1;i<=n;i++)
        {
            if(a[i]==j)
                c[i]=1;
            else
                c[i]=0;
        }
        for(i=1;i<=m;i++)
        {
            d[i]=0;
        }
        for(i=1;i<=n;i++)
        {
            if(c[i]==1)
                d[b[i]]++;
        }
        for(i=1;i<=m;i++)
            adj[j][i]=d[i];
        for(i=1;i<=m;i++)
            dinic.add_edge(j+1,i+m+1,1,-d[i]);
    }
    s=-dinic.solve(1,500).second;
    z=0;
    for(i=1;i<=n;i++)
    {
        if(perm[a[i]]==0)
        {
            for(j=1;j<=m;j++)
            {
                dinic.clear(600);
                construct_dinic(a[i],j);
                t=(-dinic.solve(1,500).second)-10000000-10000000*z;
                if(t==s)
                {
                    z++;
                    perm[a[i]]=j;
                    break;
                }
            }
        }
    }
    for(i=1;i<=n;i++)
        printf("%lld ",perm[a[i]]);
}

詳細信息

Test #1:

score: 100
Accepted
time: 1ms
memory: 12016kb

input:

4 3
2 2 3 3
2 2 2 2

output:

1 1 2 2 

result:

ok 4 number(s): "1 1 2 2"

Test #2:

score: 0
Accepted
time: 0ms
memory: 12112kb

input:

5 3
2 2 3 3 2
2 2 2 2 3

output:

3 3 2 2 3 

result:

ok 5 number(s): "3 3 2 2 3"

Test #3:

score: 0
Accepted
time: 1ms
memory: 12288kb

input:

1 1
1
1

output:

1 

result:

ok 1 number(s): "1"

Test #4:

score: 0
Accepted
time: 98ms
memory: 14460kb

input:

1 60
60
60

output:

60 

result:

ok 1 number(s): "60"

Test #5:

score: 0
Accepted
time: 95ms
memory: 14424kb

input:

1 60
1
60

output:

60 

result:

ok 1 number(s): "60"

Test #6:

score: 0
Accepted
time: 5ms
memory: 12420kb

input:

1 60
60
1

output:

1 

result:

ok 1 number(s): "1"

Test #7:

score: 0
Accepted
time: 5ms
memory: 14212kb

input:

1 60
1
1

output:

1 

result:

ok 1 number(s): "1"

Test #8:

score: -100
Time Limit Exceeded

input:

100000 60
18 36 47 52 31 3 43 49 2 4 60 23 22 3 4 25 11 50 25 40 51 51 59 5 11 50 47 28 29 21 46 39 46 49 23 50 1 24 15 30 45 12 5 2 4 33 23 29 35 35 47 13 10 24 20 44 23 16 27 4 25 27 47 27 57 47 35 31 24 47 27 17 45 44 29 44 43 4 23 20 22 43 2 53 41 32 56 21 28 56 21 15 44 60 11 52 36 26 33 26 4 5...

output:


result: