QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#498946#6116. Changing the Sequencescocoa_chan#WA 2ms12040kbC++174.7kb2024-07-30 22:04:282024-07-30 22:04:29

Judging History

你现在查看的是最新测评结果

  • [2024-07-30 22:04:29]
  • 评测
  • 测评结果:WA
  • 用时:2ms
  • 内存:12040kb
  • [2024-07-30 22:04:28]
  • 提交

answer

#include<bits/stdc++.h>
using namespace std;
typedef long long int ll;
const int N = 3e5 + 9;
using T = long long;
const T inf = 1LL << 61;
struct MCMF {
  struct edge {
    int u, v;
    T cap, cost;
    int id;
    edge(int _u, int _v, T _cap, T _cost, int _id) {
      u = _u;
      v = _v;
      cap = _cap;
      cost = _cost;
      id = _id;
    }
  };
  int n, s, t, mxid;
  T flow, cost;
  vector<vector<int>> g;
  vector<edge> e;
  vector<T> d, potential, flow_through;
  vector<int> par;
  bool neg;
  MCMF() {}
  MCMF(int _n) { // 0-based indexing
    n = _n + 10;
    g.assign(n, vector<int> ());
    neg = false;
    mxid = 0;
  }
  void add_edge(int u, int v, T cap, T cost, int id = -1, bool directed = true) {
    if(cost < 0) neg = true;
    g[u].push_back(e.size());
    e.push_back(edge(u, v, cap, cost, id));
    g[v].push_back(e.size());
    e.push_back(edge(v, u, 0, -cost, -1));
    mxid = max(mxid, id);
    if(!directed) add_edge(v, u, cap, cost, -1, true);
  }
  bool dijkstra() {
    par.assign(n, -1);
    d.assign(n, inf);
    priority_queue<pair<T, T>, vector<pair<T, T>>, greater<pair<T, T>> > q;
    d[s] = 0;
    q.push(pair<T, T>(0, s));
    while (!q.empty()) {
      int u = q.top().second;
      T nw = q.top().first;
      q.pop();
      if(nw != d[u]) continue;
      for (int i = 0; i < (int)g[u].size(); i++) {
        int id = g[u][i];
        int v = e[id].v;
        T cap = e[id].cap;
        T w = e[id].cost + potential[u] - potential[v];
        if (d[u] + w < d[v] && cap > 0) {
          d[v] = d[u] + w;
          par[v] = id;
          q.push(pair<T, T>(d[v], v));
        }
      }
    }
    for (int i = 0; i < n; i++) {
      if (d[i] < inf) d[i] += (potential[i] - potential[s]);
    }
    for (int i = 0; i < n; i++) {
      if (d[i] < inf) potential[i] = d[i];
    }
    return d[t] != inf; // for max flow min cost
    // return d[t] <= 0; // for min cost flow
  }
  T send_flow(int v, T cur) {
    if(par[v] == -1) return cur;
    int id = par[v];
    int u = e[id].u;
    T w = e[id].cost;
    T f = send_flow(u, min(cur, e[id].cap));
    cost += f * w;
    e[id].cap -= f;
    e[id ^ 1].cap += f;
    return f;
  }
  //returns {maxflow, mincost}
  pair<T, T> solve(int _s, int _t, T goal = inf) {
    s = _s;
    t = _t;
    flow = 0, cost = 0;
    potential.assign(n, 0);
    if (neg) {
      // Run Bellman-Ford to find starting potential on the starting graph
      // If the starting graph (before pushing flow in the residual graph) is a DAG,
      // then this can be calculated in O(V + E) using DP:
      // potential(v) = min({potential[u] + cost[u][v]}) for each u -> v and potential[s] = 0
      d.assign(n, inf);
      d[s] = 0;
      bool relax = true;
      for (int i = 0; i < n && relax; i++) {
        relax = false;
        for (int u = 0; u < n; u++) {
          for (int k = 0; k < (int)g[u].size(); k++) {
            int id = g[u][k];
            int v = e[id].v;
            T cap = e[id].cap, w = e[id].cost;
            if (d[v] > d[u] + w && cap > 0) {
              d[v] = d[u] + w;
              relax = true;
            }
          }
        }
      }
      for(int i = 0; i < n; i++) if(d[i] < inf) potential[i] = d[i];
    }
    while (flow < goal && dijkstra()) flow += send_flow(t, goal - flow);
    flow_through.assign(mxid + 10, 0);
    for (int u = 0; u < n; u++) {
      for (auto v : g[u]) {
        if (e[v].id >= 0) flow_through[e[v].id] = e[v ^ 1].cap;
      }
    }
    return make_pair(flow, cost);
  }
};
MCMF dinic(1000);
ll n,m,i,j,k,l,r,x,y,z,w,s,t,a[1100000],b[1100000],c[1100000],d[1100000],perm[1100000];
int main()
{
    scanf("%lld %lld",&n,&m);
    for(i=1;i<=n;i++)
    {
        scanf("%lld",&a[i]);
    }
    for(i=1;i<=n;i++)
    {
        scanf("%lld",&b[i]);
    }
    for(j=1;j<=m;j++)
    {
        dinic.add_edge(1,j+1,1,0);
        dinic.add_edge(j+m+1,500,1,0);
        for(i=1;i<=n;i++)
        {
            if(a[i]==j)
                c[i]=1;
            else
                c[i]=0;
        }
        for(i=1;i<=m;i++)
        {
            d[i]=0;
        }
        for(i=1;i<=n;i++)
        {
            if(c[i]==1)
                d[b[i]]++;
        }
        for(i=1;i<=m;i++)
            dinic.add_edge(j+1,i+m+1,1,-d[i]);
    }
    dinic.solve(1,500);
    for(i=1;i<=m;i++)
    {
        for(j=1;j<=m;j++)
        {
            for(k=0;k<dinic.e.size();k++)
            {
                if(dinic.e[k].u==i+1&&dinic.e[k].v==j+m+1&&dinic.e[k].cap==0)
                    perm[i]=j;
            }
        }
    }
    for(i=1;i<=n;i++)
    {
        printf("%lld ",perm[a[i]]);
    }
}

詳細信息

Test #1:

score: 0
Wrong Answer
time: 2ms
memory: 12040kb

input:

4 3
2 2 3 3
2 2 2 2

output:

2 2 3 3 

result:

wrong answer 1st numbers differ - expected: '1', found: '2'