QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#494183 | #9141. Array Spread | ucup-team008# | TL | 2010ms | 3836kb | C++17 | 9.1kb | 2024-07-27 14:37:15 | 2024-07-27 14:37:15 |
Judging History
你现在查看的是最新测评结果
- [2024-09-18 18:58:44]
- hack成功,自动添加数据
- (/hack/840)
- [2024-09-18 18:53:02]
- hack成功,自动添加数据
- (/hack/839)
- [2024-07-29 03:53:23]
- hack成功,自动添加数据
- (/hack/753)
- [2024-07-29 03:51:16]
- hack成功,自动添加数据
- (/hack/752)
- [2024-07-29 03:50:24]
- hack成功,自动添加数据
- (/hack/751)
- [2024-07-29 03:48:52]
- hack成功,自动添加数据
- (/hack/750)
- [2024-07-27 14:37:15]
- 提交
answer
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <cstring>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <vector>
using namespace std;
// BEGIN NO SAD
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define trav(a, x) for(auto& a : x)
#define all(x) x.begin(), x.end()
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define eb emplace_back
#define lb lower_bound
#define ub upper_bound
typedef vector<int> vi;
#define f first
#define s second
#define derr if(0) cerr
void __print(int x) {cerr << x;}
void __print(long x) {cerr << x;}
void __print(long long x) {cerr << x;}
void __print(unsigned x) {cerr << x;}
void __print(unsigned long x) {cerr << x;}
void __print(unsigned long long x) {cerr << x;}
void __print(float x) {cerr << x;}
void __print(double x) {cerr << x;}
void __print(long double x) {cerr << x;}
void __print(char x) {cerr << '\'' << x << '\'';}
void __print(const char *x) {cerr << '\"' << x << '\"';}
void __print(const string &x) {cerr << '\"' << x << '\"';}
void __print(bool x) {cerr << (x ? "true" : "false");}
template<typename T, typename V>
void __print(const pair<T, V> &x) {cerr << '{'; __print(x.first); cerr << ", "; __print(x.second); cerr << '}';}
template<typename T>
void __print(const T &x) {int f = 0; cerr << '{'; for (auto &i: x) cerr << (f++ ? ", " : ""), __print(i); cerr << "}";}
void _print() {cerr << "]\n";}
template <typename T, typename... V>
void _print(T t, V... v) {__print(t); if (sizeof...(v)) cerr << ", "; _print(v...);}
#define debug(x...) cerr << "\e[91m"<<__func__<<":"<<__LINE__<<" [" << #x << "] = ["; _print(x); cerr << "\e[39m" << flush;
// END NO SAD
template<class Fun>
class y_combinator_result {
Fun fun_;
public:
template<class T>
explicit y_combinator_result(T &&fun): fun_(std::forward<T>(fun)) {}
template<class ...Args>
decltype(auto) operator()(Args &&...args) {
return fun_(std::ref(*this), std::forward<Args>(args)...);
}
};
template<class Fun>
decltype(auto) y_combinator(Fun &&fun) {
return y_combinator_result<std::decay_t<Fun>>(std::forward<Fun>(fun));
}
template<class T>
bool updmin(T& a, T b) {
if(b < a) {
a = b;
return true;
}
return false;
}
template<class T>
bool updmax(T& a, T b) {
if(b > a) {
a = b;
return true;
}
return false;
}
typedef int64_t ll;
struct barrett_reduction {
unsigned mod;
uint64_t div;
barrett_reduction(unsigned m) : mod(m), div(-1LLU / m) {}
unsigned operator()(uint64_t a) const {
#ifdef __SIZEOF_INT128__
uint64_t q = uint64_t(__uint128_t(div) * a >> 64);
uint64_t r = a - q * mod;
return unsigned(r < mod ? r : r - mod);
#endif
return unsigned(a % mod);
}
};
template<const int &MOD, const barrett_reduction &barrett>
struct _b_int {
int val;
_b_int(int64_t v = 0) {
if (v < 0) v = v % MOD + MOD;
if (v >= MOD) v %= MOD;
val = int(v);
}
_b_int(uint64_t v) {
if (v >= uint64_t(MOD)) v %= MOD;
val = int(v);
}
_b_int(int v) : _b_int(int64_t(v)) {}
_b_int(unsigned v) : _b_int(uint64_t(v)) {}
static int inv_mod(int a, int m = MOD) {
// https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Example
int g = m, r = a, x = 0, y = 1;
while (r != 0) {
int q = g / r;
g %= r; swap(g, r);
x -= q * y; swap(x, y);
}
return x < 0 ? x + m : x;
}
explicit operator int() const { return val; }
explicit operator unsigned() const { return val; }
explicit operator int64_t() const { return val; }
explicit operator uint64_t() const { return val; }
explicit operator double() const { return val; }
explicit operator long double() const { return val; }
_b_int& operator+=(const _b_int &other) {
val -= MOD - other.val;
if (val < 0) val += MOD;
return *this;
}
_b_int& operator-=(const _b_int &other) {
val -= other.val;
if (val < 0) val += MOD;
return *this;
}
static unsigned fast_mod(uint64_t x) {
#if !defined(_WIN32) || defined(_WIN64)
return barrett(x);
#endif
// Optimized mod for Codeforces 32-bit machines.
// x must be less than 2^32 * MOD for this to work, so that x / MOD fits in an unsigned 32-bit int.
unsigned x_high = unsigned(x >> 32), x_low = unsigned(x);
unsigned quot, rem;
asm("divl %4\n"
: "=a" (quot), "=d" (rem)
: "d" (x_high), "a" (x_low), "r" (MOD));
return rem;
}
_b_int& operator*=(const _b_int &other) {
val = fast_mod(uint64_t(val) * other.val);
return *this;
}
_b_int& operator/=(const _b_int &other) {
return *this *= other.inv();
}
friend _b_int operator+(const _b_int &a, const _b_int &b) { return _b_int(a) += b; }
friend _b_int operator-(const _b_int &a, const _b_int &b) { return _b_int(a) -= b; }
friend _b_int operator*(const _b_int &a, const _b_int &b) { return _b_int(a) *= b; }
friend _b_int operator/(const _b_int &a, const _b_int &b) { return _b_int(a) /= b; }
_b_int& operator++() {
val = val == MOD - 1 ? 0 : val + 1;
return *this;
}
_b_int& operator--() {
val = val == 0 ? MOD - 1 : val - 1;
return *this;
}
_b_int operator++(int) { _b_int before = *this; ++*this; return before; }
_b_int operator--(int) { _b_int before = *this; --*this; return before; }
_b_int operator-() const {
return val == 0 ? 0 : MOD - val;
}
friend bool operator==(const _b_int &a, const _b_int &b) { return a.val == b.val; }
friend bool operator!=(const _b_int &a, const _b_int &b) { return a.val != b.val; }
friend bool operator<(const _b_int &a, const _b_int &b) { return a.val < b.val; }
friend bool operator>(const _b_int &a, const _b_int &b) { return a.val > b.val; }
friend bool operator<=(const _b_int &a, const _b_int &b) { return a.val <= b.val; }
friend bool operator>=(const _b_int &a, const _b_int &b) { return a.val >= b.val; }
_b_int inv() const {
return inv_mod(val);
}
_b_int pow(int64_t p) const {
if (p < 0)
return inv().pow(-p);
_b_int a = *this, result = 1;
while (p > 0) {
if (p & 1)
result *= a;
p >>= 1;
if (p > 0)
a *= a;
}
return result;
}
friend ostream& operator<<(ostream &os, const _b_int &m) {
return os << m.val;
}
friend istream& operator>>(istream &is, _b_int &m) {
int64_t x;
is >> x;
m = x;
return is;
}
};
int MOD = 998244353;
barrett_reduction barrett(MOD);
using mnum = _b_int<MOD, barrett>;
void rsolve() {
int n, q;
cin >> n >> q;
vector<int> allv;
vector<array<int, 2>> edges(q);
auto valid = [&](double thresh) -> bool {
vector<double> dp(sz(allv));
for(int qq = 0; qq < sz(allv); qq++) {
for(auto [a, b]: edges) {
int aidx = lb(allv.begin(), allv.end(), a) - allv.begin();
int bidx = lb(allv.begin(), allv.end(), b) - allv.begin();
updmax(dp[bidx], dp[aidx] + 1);
updmax(dp[aidx], dp[bidx] - thresh);
}
for(int i = 1; i < sz(dp); i++) updmax(dp[i], dp[i-1]);
}
for(auto [a, b]: edges) {
int aidx = lb(allv.begin(), allv.end(), a) - allv.begin();
int bidx = lb(allv.begin(), allv.end(), b) - allv.begin();
if(updmax(dp[bidx], dp[aidx] + 1)) return false;
if(updmax(dp[aidx], dp[bidx] - thresh)) return false;
for(int i = 1; i < sz(dp); i++) if(updmax(dp[i], dp[i-1])) return false;
}
return true;
};
for(auto& x: edges) {
cin >> x[0] >> x[1];
x[0]--;
assert(x[0] < x[1]);
allv.pb(x[0]);
allv.pb(x[1]);
}
sort(all(allv));
allv.resize(unique(all(allv)) - allv.begin());
double lhs = 1;
double rhs = 4e3;
for(int qq = 0; qq < 50; qq++) {
double mid = (lhs+rhs)/2;
if(valid(mid)) rhs = mid;
else lhs = mid;
}
for(int denom = 1; true; denom++) {
double num = denom * lhs;
int cand = round(num);
if(fabs(num-cand) < 1e-6) {
cout << cand / mnum(denom) << "\n";
return;
}
}
}
void solve() {
int t;
cin >> t;
while(t--) rsolve();
}
// what would chika do
// are there edge cases (N=1?)
// are array sizes proper (scaled by proper constant, for example 2* for koosaga tree)
// integer overflow?
// DS reset properly between test cases
// are you doing geometry in floating points
// are you not using modint when you should
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
solve();
}
詳細信息
Test #1:
score: 100
Accepted
time: 0ms
memory: 3756kb
input:
3 3 3 1 3 2 3 1 2 12 6 2 3 5 7 1 9 4 8 1 2 7 11 4 5 3 4 2 3 1 2 4 4 1 1
output:
1 2 499122178
result:
ok 3 number(s): "1 2 499122178"
Test #2:
score: 0
Accepted
time: 5ms
memory: 3592kb
input:
2000 1000000000 1 259923446 367011266 1000000000 1 882434225 971573327 1000000000 1 41585677 470369580 1000000000 1 371902212 947250194 1000000000 1 787209148 924205796 1000000000 1 259074809 960876164 1000000000 1 148079314 188254573 1000000000 1 940091047 948318624 1000000000 1 40636497 743979446 ...
output:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
result:
ok 2000 numbers
Test #3:
score: 0
Accepted
time: 10ms
memory: 3508kb
input:
1000 1000000000 5 575330909 661595447 708422488 913945134 658050911 930246647 786571892 904549453 851755566 969150871 1000000000 2 198072104 844159589 8876188 644559580 1000000000 2 740802634 976972118 783909534 898449184 1000000000 2 871819537 941611957 465883854 640988372 1000000000 1 99458969 462...
output:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 ...
result:
ok 1000 numbers
Test #4:
score: 0
Accepted
time: 22ms
memory: 3740kb
input:
500 1000000000 13 964546318 987364574 367845944 907446075 259314137 890312338 458318546 959971971 353677471 522446336 782931403 845199078 514387878 786979588 532634932 793056892 905393511 960628299 747423889 986373313 796099347 833069525 906969434 971335651 574582540 647534593 1000000000 6 987712893...
output:
3 1 3 1 1 1 1 1 1 3 2 1 1 1 3 1 2 1 1 2 1 3 1 1 1 2 1 2 2 1 1 1 1 1 1 1 3 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 3 1 2 1 1 1 1 2 3 1 1 1 1 1 1 1 3 2 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 3 1 1 1 1 1 1 1 2 1 1 2 1 1 1 2 1 4 1 2 1 4 1 3 1 1 1 1 1 2 1 1 4 1 ...
result:
ok 500 numbers
Test #5:
score: 0
Accepted
time: 64ms
memory: 3568kb
input:
250 1000000000 10 844342043 888135880 127033337 726074967 581308029 893912240 414276384 752837267 565680461 863374082 230362895 477723054 210479116 423381051 325072305 427826920 178306222 756423471 376470949 993759748 1000000000 2 468173597 607783582 266359996 863641680 1000000000 7 206599093 941381...
output:
2 1 2 1 3 3 1 1 1 2 1 2 2 1 3 5 2 1 1 1 2 1 2 1 3 1 2 1 3 499122178 1 1 1 1 3 1 1 1 3 3 3 1 4 1 1 1 1 1 1 1 1 5 1 4 2 1 3 1 1 1 2 5 2 1 2 6 2 2 1 2 1 1 1 5 8 2 1 2 1 1 2 2 2 1 1 5 8 3 1 1 1 8 2 6 1 1 4 2 1 1 1 1 2 2 1 2 1 1 1 1 1 1 2 1 2 1 1 4 1 1 3 1 2 3 3 2 5 1 1 1 3 2 1 1 1 3 1 1 2 1 1 1 1 3 1 1 ...
result:
ok 250 numbers
Test #6:
score: 0
Accepted
time: 55ms
memory: 3560kb
input:
250 1000000000 4 10495745 465086423 465086424 609997778 396956207 663037010 253873206 396956206 1000000000 33 596279983 655818820 226461062 338625457 407323582 423049163 711408063 778512581 220274357 226461061 702491412 711408062 686978949 688730316 369564474 434159428 778512582 787885602 675683057 ...
output:
1 2 748683266 5 6 453747435 1 10 6 1 499122183 1 4 3 1 3 1 748683266 2 499122179 10 499122178 1 499122179 4 1 7 1 665496238 2 2 2 332748119 249561090 816745381 499122178 2 499122179 5 3 4 17 1 2 2 3 249561092 1 3 924300328 499122179 2 3 332748120 2 7 3 499122187 6 374341634 1 2 332748120 2 2 2 49912...
result:
ok 250 numbers
Test #7:
score: 0
Accepted
time: 165ms
memory: 3572kb
input:
100 1000000000 17 272213590 960979163 970159974 987653658 201788340 556786243 46564706 948945765 786605927 819103747 510930374 747773556 729597186 850647589 412727504 443334406 685627406 773178988 793614323 909668193 830162056 837607472 416766039 753918198 237455713 993045890 848459092 851118478 463...
output:
8 1 1 2 3 3 1 5 1 2 8 2 1 1 3 1 3 6 3 3 2 3 7 2 1 1 3 1 2 1 5 5 2 2 4 2 7 2 1 6 1 2 5 4 5 4 1 1 1 8 6 1 4 4 5 13 1 4 9 4 8 3 8 5 4 7 1 8 1 1 1 9 2 1 6 4 4 3 1 1 1 10 4 6 11 6 6 1 1 4 1 4 2 2 13 5 1 1 5 8
result:
ok 100 numbers
Test #8:
score: 0
Accepted
time: 157ms
memory: 3624kb
input:
100 1000000000 49 187775019 193881727 145323628 162242601 964365230 971504847 226437670 229819402 46971378 49331905 871327590 883354570 310535966 323031740 904117712 916571909 458902934 484636144 13320536 14923771 571938132 574937141 89751784 102733764 412667720 421251698 908036941 932886651 2663244...
output:
2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 2 3 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 3 1 1 1 1 3 1 1 1 1 1 2 1 1 1 1 1 2 1 2 2 1 1 1
result:
ok 100 numbers
Test #9:
score: 0
Accepted
time: 166ms
memory: 3828kb
input:
100 1000000000 33 607773622 612059886 773446566 927093401 216659567 357373353 949986996 960422356 67865304 185683459 748675762 867719748 419805439 434936264 83601801 106508219 584299087 639485780 487166380 588591547 670602250 789210083 877816826 902687951 800334389 834278741 90815648 214176329 53952...
output:
4 1 4 6 3 1 1 7 1 1 3 3 1 4 4 1 2 4 1 5 1 2 2 1 2 9 2 1 2 2 1 2 1 2 4 2 2 1 1 3 2 2 2 1 1 1 1 4 1 1 2 1 1 1 2 1 7 1 1 1 6 2 1 3 6 4 10 1 1 3 5 1 1 10 8 1 3 1 1 2 3 1 1 6 1 2 1 2 3 3 2 4 1 3 2 7 1 1 1 1
result:
ok 100 numbers
Test #10:
score: 0
Accepted
time: 164ms
memory: 3612kb
input:
100 1000000000 27 423127198 447304856 209683651 219301129 831320345 879604518 631502329 814498734 130918283 202258454 434769186 463838309 448295746 500976275 778017547 864887407 60178254 66348236 615735891 725460273 78684718 129678593 219427409 221445385 242513397 378886240 549135209 710348598 24951...
output:
748683266 2 332748119 2 855638018 2 2 2 1 1 499122179 1 630470119 1 873463814 10 3 598946613 499122178 499122179 720954257 24956110 686292996 499122178 6 2 499122180 332748122 665496237 27 17 1 15 5 199648872 6 4 3 1 285212675 2 1 4 2 499122186 698771050 844668300 887328319 332748120 1 2 499122179 4...
result:
ok 100 numbers
Test #11:
score: 0
Accepted
time: 309ms
memory: 3836kb
input:
50 1000000000 54 393385964 584227315 530511168 878333402 240442438 693353417 66549203 383382851 432995043 781030135 902504635 941834946 40257869 409360381 186795487 285734229 500620269 578283640 769614926 881642580 651338390 854914246 220143804 506609845 486528251 695975933 659594236 951619961 26914...
output:
6 3 9 1 5 1 5 7 4 9 11 7 4 10 1 1 3 1 1 7 11 12 7 6 6 7 1 14 9 5 3 11 7 5 10 1 1 14 2 8 16 4 4 2 2 6 4 1 1 9
result:
ok 50 numbers
Test #12:
score: 0
Accepted
time: 15ms
memory: 3828kb
input:
50 10 65 7 10 3 6 5 7 7 7 3 9 2 2 3 10 10 10 7 7 2 3 5 6 7 10 3 9 2 8 2 8 8 8 4 8 9 9 9 9 7 9 1 1 3 6 9 10 9 10 2 3 7 8 9 10 2 9 9 10 10 10 5 7 6 10 6 8 4 5 10 10 5 5 5 10 8 8 1 9 6 7 3 6 1 9 2 5 1 10 2 9 8 9 8 8 1 1 2 9 4 9 10 10 7 10 2 3 8 9 10 10 2 4 2 9 4 7 1 3 1 9 10 10 1 4 8 9 7 8 7 8 10 88 6 ...
output:
7 8 7 6 4 4 6 4 6 8 7 6 6 3 499122178 3 3 7 10 4 2 3 5 2 8 2 8 1 4 7 4 4 7 6 1 4 2 5 3 6 4 2 1 6 1 6 3 9 6 4
result:
ok 50 numbers
Test #13:
score: 0
Accepted
time: 603ms
memory: 3576kb
input:
25 1000000000 126 107069149 368376053 479032115 765537110 991540256 997326292 403046092 722244014 490526523 516722534 274125538 310843747 777271932 894507975 30859549 117930127 295842439 932626190 696990395 727705976 919364307 981912430 452436750 754049053 436429356 707440965 255169020 717543449 875...
output:
13 12 14 15 3 8 13 499122178 9 17 3 3 5 6 6 22 3 3 16 6 17 5 6 9 19
result:
ok 25 numbers
Test #14:
score: 0
Accepted
time: 2010ms
memory: 3528kb
input:
10 1000000000 69 870434015 950861762 463726401 635711398 333118041 890448132 290535922 477961269 413309490 468893401 200588542 259174530 820993949 902249431 919016091 952057155 32176623 226256591 307850591 328322116 544612131 956816575 794988232 980183910 896176727 934471390 445409718 674881616 3109...
output:
7 21 17 13 6 11 30 26 17 14
result:
ok 10 numbers
Test #15:
score: -100
Time Limit Exceeded
input:
10 1000000000 226 722573032 815472621 582575925 607010515 411370955 463267466 92061989 217643130 187859011 258319855 811376535 844552673 426496326 431292091 785538560 983675713 328209738 364768843 338697990 509158393 502285144 536085577 202590577 293138489 873383022 956559039 765186726 836986281 219...