QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#491328 | #9156. 百万富翁 | georgeyucjr | 15 | 600ms | 85580kb | C++20 | 4.1kb | 2024-07-25 18:50:34 | 2024-07-25 18:50:35 |
Judging History
answer
// author: georgeyucjr
# include <bits/stdc++.h>
# ifndef ONLINE_JUDGE
# define LOCAL
# endif
# if __cplusplus >= 201100LL
# else
# error Please use C++11 Or Higher CPP version
# endif
using ll = long long;
using ull = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using arr3 = std :: array < int, 3 >;
using arr4 = std :: array < int, 4 >;
using pii = std :: pair < int, int >;
# define rep(i, f, t, ...) for ( std :: decay < decltype ( f + t ) > :: type i = f, _END_##i = t, ##__VA_ARGS__; i <= _END_##i; ++i )
# define per(i, f, t, ...) for ( std :: decay < decltype ( f + t ) > :: type i = f, _END_##i = t, ##__VA_ARGS__; i >= _END_##i; --i )
# define eb emplace_back
# define pb push_back
# define mkp make_pair
# define FILEIO(filename) freopen(filename ".in", "r", stdin), freopen(filename ".out", "w", stdout)
# define INLINE_V inline
template < class T, class U >
inline constexpr auto ceil ( T && x, U && y ) {
return ( x > 0 ? ( x + y - 1 ) / y : x / y );
}
template < class T, class U >
inline constexpr auto floor ( T && x, U && y ) {
return ( x > 0 ? x / y : ( x - y + 1 ) / y );
}
template < class T, class U >
inline constexpr auto divmod ( T && x, U && y ) {
auto && q = floor ( x, y );
return std :: pair { q, x - q * y };
}
# define ALL( vc ) std :: begin ( vc ), std :: end ( vc )
template < class T >
requires ( std :: is_signed_v < T > || std :: is_unsigned_v < T > )
INLINE_V constexpr static T inf = std :: numeric_limits < T > :: max ( ) >> 1;
template <std :: ranges :: forward_range R>
inline constexpr auto Sum ( R && r ) {
return std :: accumulate ( std :: ranges :: begin ( r ), std :: ranges :: end ( r ), 0 );
}
template < std :: ranges :: forward_range R, typename T >
inline constexpr auto Sum ( R && r, T init) {
return std :: accumulate ( std :: ranges :: begin ( r ), std :: ranges :: end ( r ), init );
}
template < std :: ranges :: forward_range R >
inline constexpr int SZ ( R && x ) { return std :: size ( x ); }
template < class Os, class T >
inline Os & operator << ( Os & os, T & t ) {
for ( auto ele : t )
os << ele << " ";
os << "\n";
return os;
}
template < class T >
inline constexpr void clr_cont ( T & cont ) {
T nw; cont.swap ( nw );
}
inline constexpr auto Abs ( const auto & x ) { return x < 0 ? -x : x; }
inline constexpr auto sqr ( const auto & x ) { return x * x; }
inline constexpr auto Max ( const auto & x ) { return x; }
inline constexpr auto Min ( const auto & x ) { return x; }
inline constexpr auto Max ( const auto & x, const auto & y, const auto & ... args ) { return x < y ? Max ( y, args ... ) : Max ( x, args ... ); }
inline constexpr auto Min ( const auto & x, const auto & y, const auto & ... args ) { return x < y ? Min ( x, args ... ) : Min ( y, args ... ); }
inline constexpr void chkmax ( auto & d, const auto & ... x ) { d = Max ( d, x ... ); }
inline constexpr void chkmin ( auto & d, const auto & ... x ) { d = Min ( d, x ... ); }
using namespace std;
constexpr int N = 1e6 + 5;
# include "richest.h"
constexpr array<int, 8> Ls = { (int)5e5, (int)2.5e5, 125000, 62500, 20832, 3472, 183, 1 };
// signed main() {
int richest(int n, int T, int S) {
// cerr << "N = " << n << ", T = " << T << ", S = " << S << "\n";
if (T == 1) {
vector<int> v1, v2;
rep(i, 1, n) rep(j, i + 1, n) v1.eb(i - 1), v2.eb(j - 1);
auto ans = ask(v1, v2);
vector<int> cnt(n);
for(auto i : ans) ++cnt[i];
rep(i, 0, n - 1) if (cnt[i] == n - 1) return i;
return 114514;
} else {
vector<int> id(n);
iota(ALL(id), 0);
rep(_, 0, 7) {
auto k = Ls[_];
vector<vector<int>> rec(k);
rep(i, 0, SZ(id) - 1) rec[i % k].eb(id[i]);
vector<int> v1, v2;
rep(t, 0, k - 1) {
auto tv = rec[t];
rep(x, 0, SZ(tv) - 1)
rep(y, x + 1, SZ(tv) - 1)
v1.eb(id[x]), v2.eb(id[y]);
}
auto ans = ask(v1, v2);
vector<int> cnt(n, 0);
for (auto i : ans) ++cnt[i];
id.resize(k);
rep(i, 0, k - 1) {
auto tv = rec[i];
id[i] = -1;
for (auto j : tv) if (cnt[j] == SZ(tv) - 1) id[i] = j;
}
}
return id[0];
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Pretests
Pretest #1:
score: 15
Accepted
time: 599ms
memory: 25344kb
input:
1000 1 499500 957319859
output:
Correct 7127326332295218295 1.000000 1331569654267968081
result:
points 1.0 Correct
Pretest #2:
score: 0
Wrong Answer
time: 63ms
memory: 85580kb
input:
1000000 20 2000000 29091473
output:
Index out of bounds 9775460264716263939 0.000000 6906350380861515327
result:
points 0.0 Index out of bounds
Final Tests
Test #1:
score: 15
Accepted
time: 600ms
memory: 25260kb
input:
1000 1 499500 957319857
output:
Correct 7127326332295218295 1.000000 1331569654267968081
result:
points 1.0 Correct
Test #2:
score: 0
Wrong Answer
time: 65ms
memory: 85520kb
input:
1000000 20 2000000 29091471
output:
Index out of bounds 9775460264716263939 0.000000 6906350380861515327
result:
points 0.0 Index out of bounds