QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#485815 | #5479. Traveling Salesperson in an Island | enwask | WA | 22ms | 4084kb | C++17 | 6.0kb | 2024-07-21 09:46:53 | 2024-07-21 09:46:53 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for (int i = a; i < (b); ++i)
#define all(x) begin(x), end(x)
#define sz(x) (int) (x).size()
typedef long long ll;
typedef long double ld;
typedef vector<int> vi;
template<class T>
int sgn(T x) { return (x > 0) - (x < 0); }
template<class T>
struct Point {
typedef Point P;
T x, y;
explicit Point(T x = 0, T y = 0) : x(x), y(y) {}
bool operator<(P p) const { return tie(x, y) < tie(p.x, p.y); }
bool operator==(P p) const { return (p - *this).dist2() < 1e-8; }
P operator+(P p) const { return P(x + p.x, y + p.y); }
P operator-(P p) const { return P(x - p.x, y - p.y); }
P operator*(T d) const { return P(x * d, y * d); }
P operator/(T d) const { return P(x / d, y / d); }
T dot(P p) const { return x * p.x + y * p.y; }
T cross(P p) const { return x * p.y - y * p.x; }
T cross(P a, P b) const { return (a - *this).cross(b - *this); }
T dist2() const { return x * x + y * y; }
ld dist() const { return sqrtl((ld) dist2()); }
// angle to x-axis in interval [-pi, pi]
double angle() const { return atan2(y, x); }
P unit() const { return *this / dist(); } // makes dist()=1
P perp() const { return P(-y, x); } // rotates +90 degrees
P normal() const { return perp().unit(); }
// returns point rotated 'a' radians ccw around the origin
P rotate(double a) const {
return P(x * cos(a) - y * sin(a), x * sin(a) + y * cos(a));
}
friend ostream &operator<<(ostream &os, P p) {
return os << "(" << p.x << "," << p.y << ")";
}
};
const ld inf = 1e18;
const ld eps = 1e-8;
typedef Point<ld> P;
template<class P>
int sideOf(P s, P e, P p) {
auto cp = s.cross(e, p);
return (cp > 0) - (cp < 0);
}
template<class P>
bool doSegInter(P s1, P e1, P s2, P e2) {
return sideOf(s1, e1, s2) != sideOf(s1, e1, e2) && sideOf(s2, e2, s1) != sideOf(s2, e2, e1);
}
// 0 = no intersection, 1 = segments intersect, -1 = coincide or share an endpoint
int segInter(P a, P b, P c, P d) {
auto oa = c.cross(d, a), ob = c.cross(d, b),
oc = a.cross(b, c), od = a.cross(b, d);
if (sgn(oa) * sgn(ob) > 0 || sgn(oc) * sgn(od) > 0) return 0; // no intersection
if (sgn(oa) * sgn(ob) < 0 && sgn(oc) * sgn(od) < 0) return 1; // intersection
return -1; // coincide or share an endpoint
}
template<class P>
bool onSegment(P s, P e, P p) {
return abs(s.cross(e, p)) < eps && (s - p).dot(e - p) < eps;
}
template<class P>
int inPoly(vector<P> poly, P p) {
bool good = false;
int n = sz(poly);
auto crosses = [](P s, P e, P p) {
return ((e.y >= p.y) - (s.y >= p.y)) * p.cross(s, e) > 0;
};
for (int i = 0; i < n; i++) {
if (onSegment(poly[i], poly[(i + 1) % n], p)) return 2;
good ^= crosses(poly[i], poly[(i + 1) % n], p);
}
return good;
}
// #include "geo.h"
void solve() {
int n, m;
cin >> n >> m;
vector<P> pol(n), pts(m), old_pts(n + m), all_pts;
for (auto &[x, y] : pol) cin >> x >> y;
for (auto &[x, y] : pts) cin >> x >> y;
copy(all(pol), begin(old_pts));
copy(all(pts), begin(old_pts) + n);
// sort everything
rep(i, 0, n) {
P u = pol[i], v = pol[(i + 1) % n];
vector<P> lin{u, v};
rep(j, 0, m) {
P p = pts[j];
if (onSegment(u, v, p)) lin.push_back(p);
}
old_pts.erase(
remove_if(all(old_pts), [&](P p) {
return count(all(lin), p);
}),
end(old_pts));
sort(all(lin), [&](P a, P b) {
return (a - u).dist2() < (b - u).dist2();
});
all_pts.insert(end(all_pts), all(lin));
}
all_pts.erase(unique(all(all_pts)), end(all_pts));
int tot = sz(all_pts);
// GD_INIT("vis.html");
// rep(i, 0, tot) {
// P u = all_pts[i], v = all_pts[(i + 1) % tot];
// if (count(all(pts), u)) GD_POINT(u.x, u.y, "black");
// GD_SEGMENT(u.x, u.y, v.x, v.y, "black");
// }
// GD_PAUSE();
vector<vector<pair<int, ld>>> adj(tot);
auto do_thing = [&](int i, int j) -> bool {
P a = all_pts[i], b = all_pts[j];
// check if we intersect any edges (that are not adjacent to a or b)
rep(k, 0, n) {
if (k == i || k == j || (k + 1) % n == i || (k + 1) % n == j) continue;
P c = pol[k], d = pol[(k + 1) % n];
// check for intersection
int inter = segInter(a, b, c, d);
if (inter > 0) return false;
}
// check if the edge is inside the polygon
P m = (a + b) / 2.l;
if (!inPoly(pol, m)) return false;
// GD_SEGMENT(a.x, a.y, b.x, b.y, "green");
ld d = (a - b).dist();
adj[i].emplace_back(j, d);
adj[j].emplace_back(i, d);
return true;
};
rep(i, 0, tot) {
rep(j, i + 1, tot) {
do_thing(i, j);
}
}
vector<vector<ld>> dist(tot, vector<ld>(tot, 1e18));
rep(i, 0, tot) dist[i][i] = 0;
rep(i, 0, tot) for (auto [j, d] : adj[i]) dist[i][j] = min(dist[i][j], d);
rep(h, 0, tot) rep(i, 0, tot) rep(j, 0, tot)
dist[i][j] = min(
dist[i][j],
dist[i][h] + dist[h][j]);
// // print dist
// cout << "\ndist:\n";
// rep(i, 0, k) {
// cout << i << ": {\n";
// rep(j, 0, k) cout << "\t-> " << j << " = " << dist[i][j] << "\n";
// cout << "}\n";
// }
vector<pair<int, P>> ord;
rep(i, 0, tot) if (count(all(pts), all_pts[i])) ord.emplace_back(i, all_pts[i]);
// GD_PAUSE();
ld res = 0;
rep(i, 0, m) {
int u = ord[i].first, v = ord[(i + 1) % m].first;
res += dist[u][v];
// GD_SEGMENT(all_pts[u].x, all_pts[u].y, all_pts[v].x, all_pts[v].y, "red bold");
}
// GD_CIRCLE(ord[0].second.x, ord[0].second.y, 10, "red bold");
cout << setprecision(10) << fixed << res << '\n';
}
int main() {
cin.tie(0)->sync_with_stdio(0);
cin.exceptions(cin.failbit);
int t = 1;
// cin >> t;
while (t--) solve();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3988kb
input:
4 4 0 0 2 0 2 2 0 2 1 0 1 2 2 1 0 1
output:
5.6568542495
result:
ok found '5.6568542', expected '5.6568542', error '0.0000000'
Test #2:
score: 0
Accepted
time: 0ms
memory: 4084kb
input:
8 2 0 0 4 0 4 4 0 4 0 3 3 3 3 1 0 1 0 0 0 4
output:
16.6491106407
result:
ok found '16.6491106', expected '16.6491106', error '0.0000000'
Test #3:
score: 0
Accepted
time: 0ms
memory: 3864kb
input:
4 4 0 0 2 0 2 2 0 2 1 0 2 1 1 2 0 1
output:
5.6568542495
result:
ok found '5.6568542', expected '5.6568542', error '0.0000000'
Test #4:
score: 0
Accepted
time: 0ms
memory: 3808kb
input:
8 2 0 0 4 0 4 4 0 4 0 3 3 3 3 1 0 1 0 0 0 4
output:
16.6491106407
result:
ok found '16.6491106', expected '16.6491106', error '0.0000000'
Test #5:
score: -100
Wrong Answer
time: 22ms
memory: 4084kb
input:
76 98 268 97 299 202 133 205 110 251 384 226 332 198 532 241 448 83 268 82 543 62 873 93 387 317 905 90 945 132 827 335 983 222 919 534 945 264 910 287 789 705 837 176 793 563 777 665 782 345 746 315 715 315 810 161 369 599 278 671 641 423 703 344 753 619 672 402 596 709 161 701 216 857 325 942 135 ...
output:
14637.0741178637
result:
wrong answer 1st numbers differ - expected: '14645.5751139', found: '14637.0741179', error = '0.0005804'