QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#482333#4222. 题Fffoooo100 ✓805ms503936kbC++144.4kb2024-07-17 18:57:362024-07-17 18:57:36

Judging History

你现在查看的是最新测评结果

  • [2024-07-17 18:57:36]
  • 评测
  • 测评结果:100
  • 用时:805ms
  • 内存:503936kb
  • [2024-07-17 18:57:36]
  • 提交

answer

#include<bits/stdc++.h>
using namespace std;
int mian(); int main() { return mian(); }
/*
给定常为 $3n$,值域为 $[0,3]$ 的序列 $S$,可以将其中的 $0$ 更改为 $[1,3]$ 得到 $T$ 
求出对所有 $T$,合法的 $a$ 的数量的和 
合法的 $a$ 表示为长为 $n$ 的三元序列 ${a_{i,1},a_{i,2},a_{i,3}}$ ,满足 
$(T_{a_{i,1}},T_{a_{i,2}},T_{a_{i,3}})=(1,3,2)\space or\space (2,1,3)\space or\space (3,2,1)$
且 $a_{i,1}<a_{i,2}<a_{i,3}$ ,每个 $a$ 互不相同 
$n\le 19, mod = 10^9+7$
$1s,1G$

因为只有三种形态,那么每一次新加入的一个字符,就是要让这个字符与之前的某个未完成的前缀 $a$ 进行匹配,或者继续成为一个未完成的前缀 
因为空间很大,直接设计 `f[i][j][k][o][p][q]`,表示到当前位置(状态中省略,滚动),已经有 $(i,j,k,o,p,q)$ 个未完成匹配的前缀是 $(1, 2, 3, 13, 21, 32)$
每一次直接根据这一位是什么转移即可,时间复杂度 $O(3*n^7)$,因为还要枚举当前位置,但是因为状态和只有 $n$,因此存在巨大的常数 
答案即为没有任何前缀没有匹配,即全为 $0$ 
注意题目中的 $a$ 之间是互相没有限制,即每一个匹配完成的 $a$ 可以在任何顺序,因此要加上一个阶乘 
同理,转移过程中的每一步都要在所有的方案中选择一个数字转移,因此每一步都要乘上选走的东西的方案数(就是与这个数拼接的所有前缀都可以选且是不同的,因此每种方案都要计算) 
注意只需要乘上选择某一个数的方案而不需要乘上放入的方案,因为放入时是无序的,所以取出时才需要选择 
*/
#define ll long long
const int N = 20;
const int mod = 1e9 + 7;
int n, S;

int f[2][N][N][N][N][N][N];

#define FOR \
	for(int i = 0; i <= n; ++i) \
		for(int j = 0; j + i <= n; ++j) \
			for(int k = 0; i + j + k <= n; ++k) \
				for(int o = 0; i + j + k + o <= n; ++o) \
					for(int p = 0; i + j + k + o + p <= n; ++p) \
						for(int q = 0; i + j + k + o + p + q <= n; ++q) 
//多一个1,多一个21,多一个完成匹配 
void doo1(const int now)  {
	FOR f[now][i][j][k][o][p][q] = ( ( i ? (ll)f[now ^ 1][i - 1][j][k][o][p][q] : 0 ) + ( p and j < n ? (ll)f[now ^ 1][i][j + 1][k][o][p - 1][q] * (j + 1) % mod : 0 ) + ( q < n ? (ll)f[now ^ 1][i][j][k][o][p][q + 1] * (q + 1) % mod : 0 ) ) % mod;
}
void doo2(const int now) {
	FOR f[now][i][j][k][o][p][q] = ( ( j ? (ll)f[now ^ 1][i][j - 1][k][o][p][q] : 0 ) + ( q and k < n ? (ll)f[now ^ 1][i][j][k + 1][o][p][q - 1] * (k + 1) % mod : 0 ) + ( o < n ? (ll)f[now ^ 1][i][j][k][o + 1][p][q] * (o + 1) % mod : 0 ) ) % mod;
}
void doo3(const int now) {
	FOR f[now][i][j][k][o][p][q] = ( ( k ? (ll)f[now ^ 1][i][j][k - 1][o][p][q] : 0 ) + ( o and i < n ? (ll)f[now ^ 1][i + 1][j][k][o - 1][p][q] * (i + 1) % mod : 0 ) + ( p < n ? (ll)f[now ^ 1][i][j][k][o][p + 1][q] * (p + 1) % mod : 0 ) ) % mod;
}
void doo0(const int now) {
	FOR f[now][i][j][k][o][p][q] = ( ( i ? (ll)f[now ^ 1][i - 1][j][k][o][p][q] : 0 ) + ( p and j < n ? (ll)f[now ^ 1][i][j + 1][k][o][p - 1][q] * (j + 1) % mod : 0 ) + ( q < n ? (ll)f[now ^ 1][i][j][k][o][p][q + 1] * (q + 1) % mod : 0 ) + 
									 ( j ? (ll)f[now ^ 1][i][j - 1][k][o][p][q] : 0 ) + ( q and k < n ? (ll)f[now ^ 1][i][j][k + 1][o][p][q - 1] * (k + 1) % mod : 0 ) + ( o < n ? (ll)f[now ^ 1][i][j][k][o + 1][p][q] * (o + 1) % mod : 0 ) + 
									 ( k ? (ll)f[now ^ 1][i][j][k - 1][o][p][q] : 0 ) + ( o and i < n ? (ll)f[now ^ 1][i + 1][j][k][o - 1][p][q] * (i + 1) % mod : 0 ) + ( p < n ? (ll)f[now ^ 1][i][j][k][o][p + 1][q] * (p + 1) % mod : 0 ) ) % mod;
}
void out(const int now, const int it) {
	FOR if(f[now][i][j][k][o][p][q]) printf("%d f[%d][%d][%d][%d][%d][%d]=%d\n", it, i, j, k, o, p, q, f[now][i][j][k][o][p][q]);
}

void solve() {
	scanf("%d", &n);
	
	memset(f, 0, sizeof f);
	f[1][0][0][0][0][0][0] = 1;
	int now = 0;
	int fac = 1;
	
	for(int i = 1; i <= 3 * n; ++i) {
		scanf("%1d", &S);
		if( i <= n ) fac = (ll)fac * i % mod;
		switch(S) {
			case 1 : { doo1(now); break; }
			case 2 : { doo2(now); break; }
			case 3 : { doo3(now); break; }
			default: { doo0(now); }
		}
		now ^= 1;
	}
	printf("%lld\n", (ll)fac * f[now ^ 1][0][0][0][0][0][0] % mod);
}
int mian() {
	int T; scanf("%d", &T);
	while(T--) solve();
	return 0;
} /*
1
19
202000300003001300011000011021320001000300320020302022103
*/

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 10
Accepted
time: 181ms
memory: 503740kb

input:

5
1
123
1
100
1
000
1
300
1
010

output:

0
1
3
1
1

result:

ok 5 lines

Test #2:

score: 10
Accepted
time: 169ms
memory: 503740kb

input:

5
1
303
2
000320
2
002000
2
002020
2
020020

output:

0
36
60
12
12

result:

ok 5 lines

Test #3:

score: 10
Accepted
time: 166ms
memory: 503788kb

input:

5
2
110133
3
200010000
3
002002200
3
300000000
3
000000130

output:

0
5940
540
15120
7560

result:

ok 5 lines

Test #4:

score: 10
Accepted
time: 188ms
memory: 503732kb

input:

5
5
000000000000000
4
000000000000
3
000000000
2
000000
1
000

output:

864823720
29937600
45360
180
3

result:

ok 5 lines

Test #5:

score: 10
Accepted
time: 168ms
memory: 503936kb

input:

5
6
000121310223223210
7
033221120002010100230
7
000003020000010302010
7
000010002020302300100
7
030100002033300000000

output:

26853120
152413083
939384999
4309685
970165754

result:

ok 5 lines

Test #6:

score: 10
Accepted
time: 174ms
memory: 503792kb

input:

5
9
120332011311030220200103301
10
200003200103011232000202201120
10
000000201330030030101000003000
10
020000002032000000200000100002
10
100200322001000000320000002010

output:

963757075
290911546
487693965
730680478
984422198

result:

ok 5 lines

Test #7:

score: 10
Accepted
time: 202ms
memory: 503800kb

input:

5
13
000000000000000000000000000000000000000
12
000000000000000000000000000000000000
11
000000000000000000000000000000000
10
000000000000000000000000000000
9
000000000000000000000000000

output:

856865849
574346463
607449787
883895867
88660419

result:

ok 5 lines

Test #8:

score: 10
Accepted
time: 399ms
memory: 503872kb

input:

5
15
331110203302222220331213331310312220103030021
16
001301022200100032010330002213000300220033210033
16
020002030002000330003200030010000000000100002300
16
320000001003222000003000003000300010323113200020
16
000203000000000000010100000000000000002000210000

output:

70336694
482512438
740138646
212387388
427674884

result:

ok 5 lines

Test #9:

score: 10
Accepted
time: 649ms
memory: 503776kb

input:

5
17
221001103220113003322101120223031133120301212031002
18
201000020000000010323100000333030002012000213100030001
18
013203020100001021200030003102000130000002330303302120
18
010003030200000200100000002000000000000302000203103300
18
000001000132020000200321023010000000000000000132210300

output:

821788453
589132243
303959134
648206569
571580782

result:

ok 5 lines

Test #10:

score: 10
Accepted
time: 805ms
memory: 503792kb

input:

5
18
331110100201233220121012022130200011112133012123201012
19
221011310310012302220013020123002132313030023020101110230
19
202000300003001300011000011021320001000300320020302022103
19
010030200000000000300300310000001302002000010230000330020
19
000000000000031000000000131200020001000020000001020000...

output:

171958822
242716134
229925968
914555153
59496792

result:

ok 5 lines

Extra Test:

score: 0
Extra Test Passed