QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#473538 | #7647. 树哈希 | hos_lyric | 48 | 1442ms | 28624kb | C++14 | 9.2kb | 2024-07-12 08:46:40 | 2024-07-12 08:46:41 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
////////////////////////////////////////////////////////////////////////////////
// Barrett
struct ModInt {
static unsigned M;
static unsigned long long NEG_INV_M;
static void setM(unsigned m) { M = m; NEG_INV_M = -1ULL / M; }
unsigned x;
ModInt() : x(0U) {}
ModInt(unsigned x_) : x(x_ % M) {}
ModInt(unsigned long long x_) : x(x_ % M) {}
ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) {
const unsigned long long y = static_cast<unsigned long long>(x) * a.x;
const unsigned long long q = static_cast<unsigned long long>((static_cast<unsigned __int128>(NEG_INV_M) * y) >> 64);
const unsigned long long r = y - M * q;
x = r - M * (r >= M);
return *this;
}
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
unsigned ModInt::M;
unsigned long long ModInt::NEG_INV_M;
// !!!Use ModInt::setM!!!
////////////////////////////////////////////////////////////////////////////////
using Mint = ModInt;
constexpr int LIM_INV = 1010;
Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];
void prepare() {
inv[1] = 1;
for (int i = 2; i < LIM_INV; ++i) {
inv[i] = -((Mint::M / i) * inv[Mint::M % i]);
}
fac[0] = invFac[0] = 1;
for (int i = 1; i < LIM_INV; ++i) {
fac[i] = fac[i - 1] * i;
invFac[i] = invFac[i - 1] * inv[i];
}
}
Mint binom(Int n, Int k) {
if (n < 0) {
if (k >= 0) {
return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k);
} else if (n - k >= 0) {
return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k);
} else {
return 0;
}
} else {
if (0 <= k && k <= n) {
assert(n < LIM_INV);
return fac[n] * invFac[k] * invFac[n - k];
} else {
return 0;
}
}
}
constexpr int N = 50;
int NN, MO;
Mint q;
// h(x) = log(1 + q (g(x) - 1))
void pie(int deg, const Mint *gs, Mint *hs) {
static Mint work[N + 1];
work[0] = 1;
for (int i = 1; i <= deg; ++i) work[i] = q * gs[i];
for (int i = 1; i <= deg; ++i) {
hs[i] = i * work[i];
for (int j = 1; j < i; ++j) hs[i] -= work[i - j] * hs[j];
}
for (int i = 1; i <= deg; ++i) hs[i] *= inv[i];
}
// partition of <= N/2
// (0, fs[1], ..., fs[N/2])
int U;
vector<int> sums;
vector<vector<int>> fss;
vector<vector<vector<int>>> sub, sup;
int indexOf(const vector<int> &fs) {
auto it = lower_bound(fss.begin(), fss.end(), fs);
assert(it != fss.end());
assert(*it == fs);
return it - fss.begin();
}
void dfs(int n, int a, vector<int> &fs) {
if (a == N/2) {
sums.push_back(n);
fss.push_back(fs);
return;
}
++a;
const int lim = (N/2 - n) / a;
for (int f = 0; f <= lim; ++f) {
fs[a] = f;
dfs(n + f * a, a, fs);
}
fs[a] = 0;
}
int main() {
scanf("%d%u%d", &NN, &q.x, &MO);
Mint::setM(MO);
prepare();
{
vector<int> fs(N/2 + 1, 0);
dfs(0, 0, fs);
}
U = fss.size();
sub.assign(U, vector<vector<int>>(N/2 + 1));
sup.assign(U, vector<vector<int>>(N/2 + 1));
for (int u = 0; u < U; ++u) {
auto fs = fss[u];
for (int a = 1; a <= N/2; ++a) {
if (fss[u][a]) {
sub[u][a].resize(fss[u][a]);
for (int f = 0; f < fss[u][a]; ++f) {
fs[a] = f;
sub[u][a][f] = indexOf(fs);
}
} else {
const int lim = (N/2 - sums[u]) / a;
sup[u][a].resize(lim + 1);
for (int f = 0; f <= lim; ++f) {
fs[a] = f;
sup[u][a][f] = indexOf(fs);
}
}
fs[a] = fss[u][a];
}
}
vector<vector<Mint>> G(U), H(U);
for (int u = 0; u < U; ++u) {
const int deg = N - sums[u];
G[u].assign(deg + 1, 0);
H[u].assign(deg + 1, 0);
if (u == 0) {
G[u][0] = 1;
} else {
for (int a = N/2; ; --a) if (fss[u][a]) {
const int v = sub[u][a].back();
for (int j = 0; j * a <= deg; ++j) {
const Mint t = invFac[j].pow(a);
for (int i = 0; i + j * a <= deg; ++i) {
G[u][i + j * a] += G[v][i] * t;
}
}
break;
}
}
pie(deg, G[u].data(), H[u].data());
// cerr<<"u="<<u<<" sums[u]="<<sums[u]<<" fss[u]="<<fss[u]<<" sub[u]="<<sub[u]<<" sup[u]="<<sup[u]<<" G[u]="<<G[u]<<" H[u]="<<H[u]<<endl;
}
/*
dp[n][u]
n: # vertex
u: partition, attach >= 1 child later
n <= |u| <= N - n
*/
vector<vector<Mint>> dp(N + 1, vector<Mint>(U, 0));
dp[0][0] = 1;
for (int a = 1; a <= N; ++a) {
auto trans = [&](int sig) -> void {
for (int n = 0; n <= N; ++n) {
for (int b = 1; b <= N/2 && b < a; ++b) {
for (int u = 0; u < U; ++u) if (dp[n][u]) {
const int f = fss[u][b];
for (int ff = 0; ff < f; ++ff) {
const int v = sub[u][b][ff];
dp[n][v] += dp[n][u] * ((f-ff)&1?sig:+1) * binom(f, ff);
}
}
}
}
};
trans(-1);
// cerr<<__LINE__<<": a = "<<a<<", dp = "<<dp<<endl;
for (int n = N; n >= 0; --n) {
for (int u = 0; u < U; ++u) if (dp[n][u]) { // TODO
for (int f = 1; n + f * a <= N; ++f) {
const Mint val = (a == 1) ? (invFac[f] * Mint(f).pow(f - 1) * q.pow(f)) : (invFac[f] * H[u][a] * (H[u][a] + q * f).pow(f - 1));
const int lim = min((N/2 - sums[u]) / a, f);
for (int ff = 0; ff <= lim; ++ff) { // TODO
const int v = ff ? sup[u][a][ff] : u;
dp[n + f * a][v] += dp[n][u] * val * binom(f, ff);
}
}
}
}
// cerr<<__LINE__<<": a = "<<a<<", dp = "<<dp<<endl;
trans(+1);
// cerr<<__LINE__<<": a = "<<a<<", dp = "<<dp<<endl;
for (int n = 0; n < N; ++n) {
for (int u = 0; u < U; ++u) if (n + sums[u] > N) {
dp[n][u] = 0;
}
}
}
vector<Mint> ans(N + 1);
for (int n = 0; n <= N; ++n) {
ans[n] = dp[n][0];
}
// EGF -> fixed root
for (int n = 1; n <= N; ++n) {
ans[n] *= fac[n - 1];
}
ans.resize(NN + 1, 0);
for (int n = 1; n <= NN; ++n) {
printf("%u\n", ans[n].x);
}
return 0;
}
/*
10 10 1000000007
10
100
2100
69100
3040100
168335100
222076023
63944968
21587160
844588529
*/
Details
Tip: Click on the bar to expand more detailed information
Subtask #1:
score: 48
Acceptable Answer
Test #1:
score: 48
Acceptable Answer
time: 1412ms
memory: 28624kb
input:
100 910342260 935929297
output:
910342260 816177711 569226551 514707635 267406725 391906453 250727611 208481307 81485772 23235693 216730633 285646992 175230876 274553119 174038157 203318484 775234565 322891510 933522659 900692754 745314049 700055439 779013783 855717291 855228480 586396378 894281940 384312444 13774937 289289189 350...
result:
points 0.480 You got 48 pts!
Test #2:
score: 48
Acceptable Answer
time: 1442ms
memory: 28612kb
input:
100 222959056 947643239
output:
222959056 358599927 365062242 287299555 872152310 785181552 689517811 751458049 373969559 887125628 238000283 265869067 862846962 717459206 118380127 903859172 38731072 220551290 311944377 678478487 757437607 696077670 937732236 530238679 704937150 7448691 641846446 371506084 447810391 783651844 625...
result:
points 0.480 You got 48 pts!
Test #3:
score: 48
Acceptable Answer
time: 1439ms
memory: 28504kb
input:
100 135352674 235854343
output:
135352674 116843515 129198122 128256418 202034449 101078108 134511179 26177395 38146936 177689345 171471260 220203615 2725266 54489245 202150371 51581049 9159057 174134120 214954721 6858381 164936156 136507834 11983036 56210425 230637079 37588391 129846550 182944624 119805049 221591404 162552601 186...
result:
points 0.480 You got 48 pts!
Test #4:
score: 48
Acceptable Answer
time: 1431ms
memory: 28580kb
input:
100 538608644 566215339
output:
538608644 365236991 134179965 39370099 416828003 17910602 226317362 529379896 407121368 81806097 249408176 336758120 296361261 35236747 429449088 328368699 409154256 418665686 24463075 203118458 352974481 3351773 506522141 61405204 248921056 351694297 485859431 419342548 146415751 178371945 27124423...
result:
points 0.480 You got 48 pts!
Test #5:
score: 48
Acceptable Answer
time: 1429ms
memory: 28616kb
input:
100 56831820 281897771
output:
56831820 213573518 5338712 114481529 104176011 222091299 258318286 168492731 248042852 279768543 163273831 250332871 125456436 55441194 94771937 85241933 265069860 227132810 189427807 26222782 184487649 201740742 267160664 98981147 101908728 84191074 210184730 48919201 13655254 229320762 238370870 2...
result:
points 0.480 You got 48 pts!