QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#466674#8512. Harmonic OperationsSwarthmore#TL 8ms19644kbC++206.0kb2024-07-08 01:29:392024-07-08 01:29:41

Judging History

你现在查看的是最新测评结果

  • [2024-07-08 01:29:41]
  • 评测
  • 测评结果:TL
  • 用时:8ms
  • 内存:19644kb
  • [2024-07-08 01:29:39]
  • 提交

answer

#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pi;
typedef pair<ll, ll> pl;
typedef pair<ld, ld> pd;

typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;

#define FOR(i, a, b) for (int i = a; i < (b); i++)
#define F0R(i, a) for (int i = 0; i < (a); i++)
#define FORd(i, a, b) for (int i = (b) - 1; i >= (a); i--)
#define F0Rd(i, a) for (int i = (a) - 1; i >= 0; i--)
#define trav(a, x) for (auto &a : x)
#define sz(x) (int)(x).size()
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
#define ins insert

const char nl = '\n';

void __print(int x) {cerr << x;}
void __print(long x) {cerr << x;}
void __print(long long x) {cerr << x;}
void __print(unsigned x) {cerr << x;}
void __print(unsigned long x) {cerr << x;}
void __print(unsigned long long x) {cerr << x;}
void __print(float x) {cerr << x;}
void __print(double x) {cerr << x;}
void __print(long double x) {cerr << x;}
void __print(char x) {cerr << '\'' << x << '\'';}
void __print(const char *x) {cerr << '\"' << x << '\"';}
void __print(const string &x) {cerr << '\"' << x << '\"';}
void __print(bool x) {cerr << (x ? "true" : "false");}

template<typename T, typename V>
void __print(const pair<T, V> &x);
template<typename T>
void __print(const T &x) {int f = 0; cerr << '{'; for (auto &i: x) cerr << (f++ ? ", " : ""), __print(i); cerr << "}";}
template<typename T, typename V>
void __print(const pair<T, V> &x) {cerr << '{'; __print(x.first); cerr << ", "; __print(x.second); cerr << '}';}
void _print() {cerr << "]\n";}
template <typename T, typename... V>
void _print(T t, V... v) {__print(t); if (sizeof...(v)) cerr << ", "; _print(v...);}
#ifdef DEBUG
#define dbg(x...) cerr << "\e[91m"<<__func__<<":"<<__LINE__<<" [" << #x << "] = ["; _print(x); cerr << "\e[39m" << endl;
#else
#define dbg(x...)
#endif

using cd = complex<double>;
const double PI = acos(-1);

#define uid(a, b) uniform_int_distribution<int>(a, b)(rng)

mt19937 rng(1259);

int reverse(int num, int lg_n) {
    int res = 0;
    for (int i = 0; i < lg_n; i++) {
        if (num & (1 << i))
            res |= 1 << (lg_n - 1 - i);
    }
    return res;
}

void fft(vector<cd> & a, bool invert) {
    int n = a.size();
    int lg_n = 0;
    while ((1 << lg_n) < n)
        lg_n++;

    for (int i = 0; i < n; i++) {
        if (i < reverse(i, lg_n))
            swap(a[i], a[reverse(i, lg_n)]);
    }

    for (int len = 2; len <= n; len <<= 1) {
        double ang = 2 * PI / len * (invert ? -1 : 1);
        cd wlen(cos(ang), sin(ang));
        for (int i = 0; i < n; i += len) {
            cd w(1);
            for (int j = 0; j < len / 2; j++) {
                cd u = a[i+j], v = a[i+j+len/2] * w;
                a[i+j] = u + v;
                a[i+j+len/2] = u - v;
                w *= wlen;
            }
        }
    }

    if (invert) {
        for (cd & x : a)
            x /= n;
    }
}
vector<ll> multiply(vector<ll> const& a, vector<ll> const& b) {
    vector<cd> fa(a.begin(), a.end()), fb(b.begin(), b.end());
    int n = 1;
    while (n < a.size() + b.size()) 
        n <<= 1;
    fa.resize(n);
    fb.resize(n);

    fft(fa, false);
    fft(fb, false);
    for (int i = 0; i < n; i++)
        fa[i] *= fb[i];
    fft(fa, true);

    vector<ll> result(n);
    for (int i = 0; i < n; i++)
        result[i] = round(fa[i].real());
    return result;
}

const int MX = 1000010;

ll base1[MX], base2[MX];
int base;
const int MOD = 1000000007;

const ll p1 = MOD;
const ll p2 = MOD+2;

// If you don't need to query arbitrary ranges,
// only maintain val1 and val2 to save space.
// get() = val1 * p2 + val2
struct hsh {
    ll val1, val2;
    vl val1s, val2s;
    vl nums;
    hsh() {
        val1 = 0;
        val2 = 0;
        val1s.pb(0);
        val2s.pb(0);
    }

    void push_back(ll v) {
        v++;
        val1 *= base; val1 += v; val1 %= p1;
        val2 *= base; val2 += v; val2 %= p2;

        val1s.pb(val1);
        val2s.pb(val2);
        nums.pb(v);
    }

    ll get(int L, int R) {
        ll A = (val1s[R+1] - (val1s[L] * base1[R-L+1]) % p1 + p1) % p1;
        ll B = (val2s[R+1] - (val2s[L] * base2[R-L+1]) % p2 + p2) % p2;
        return A*p2+B;
    }
};

void prepHash() {
    base = uid(MOD/5, MOD/2);

    base1[0] = 1; base2[0] = 1;
    FOR(i, 1, MX) {
        base1[i] = (base1[i-1] * base) % p1;
        base2[i] = (base2[i-1] * base) % p2;
    }
}



void solve() {
    prepHash();

    string S; cin >> S;
    int N = sz(S);
    hsh H;
    F0R(iter, 2) {
        trav(a, S) {
            H.pb(a-'a');
        }
    }
    hsh Hr;
    F0R(iter, 2) {
        F0Rd(i, sz(S)) {
            Hr.pb(S[i]-'a');
        }
    }

    bool ok[2][N];
    F0R(i, N) {
        ok[0][i] = H.get(i, i+N-1) == H.get(0, N-1);
        ok[1][i] = Hr.get(i, i+N-1) == H.get(0, N-1);
    }

    int K; cin >> K;
    vl sums(N), negSums(N), revSums(N), negRevSums(N);
    bool fl = false;
    int cur = 0;
    sums[0]++; negSums[0]++;
    F0R(i, K) {
        char C; cin >> C;
        if (C != 'I') {
            int X; cin >> X;
            if (C == 'R') X = N-X;
            cur += X; cur %= N;
        } else { 
            fl = !fl;
            cur = (N-cur)%N;
        }
        if (fl) {
            revSums[cur]++;
            negRevSums[(N-cur)%N]++;
        } else {
            sums[cur]++;
            negSums[(N-cur)%N]++;
        }
    }


    vl poly1 = multiply(negSums, sums);
    //dbg(sums, negSums, revSums, negRevSums);
    ll ans = 0;
    F0R(i, sz(poly1)) {
        if (ok[0][i%N]) ans += poly1[i];
    }
    //dbg(ans);
    vl poly2 = multiply(revSums, sums);
    F0R(i, sz(poly2)) {
        if (ok[1][i%N]) ans += poly2[i] * 2;
    }
    //dbg(ans);
    vl poly3 = multiply(revSums, negRevSums);
    F0R(i, sz(poly3)) {
        if (ok[0][i%N]) ans +=  poly3[i];
    }
    //dbg(ans);
    ans -= K+1;
    ans /= 2;
    cout << ans << nl;

}

int main() {
	ios_base::sync_with_stdio(0); cin.tie(0);
	solve();
	return 0;
}

详细

Test #1:

score: 100
Accepted
time: 8ms
memory: 19416kb

input:

pda
2
R 2
L 2

output:

1

result:

ok 1 number(s): "1"

Test #2:

score: 0
Accepted
time: 0ms
memory: 19440kb

input:

aaa
4
R 1
I
I
R 1

output:

10

result:

ok 1 number(s): "10"

Test #3:

score: 0
Accepted
time: 8ms
memory: 19480kb

input:

caso
6
L 1
I
I
R 1
I
I

output:

4

result:

ok 1 number(s): "4"

Test #4:

score: 0
Accepted
time: 4ms
memory: 19420kb

input:

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
100
L 12
I
R 47
L 54
I
I
R 80
L 86
L 19
R 5
L 53
L 40
R 20
L 11
R 40
I
I
R 66
R 6
L 76
L 93
R 39
I
I
L 24
R 59
R 99
L 52
I
I
R 77
L 11
R 60
L 16
I
L 40
I
R 35
L 64
R 11
L 34
I
R 35
I
L 87
I
I
L 42
L ...

output:

5050

result:

ok 1 number(s): "5050"

Test #5:

score: 0
Accepted
time: 2ms
memory: 19480kb

input:

wewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewe
100
R 83
R 34
I
I
R 87
R 74
L 98
I
L 77
L 8
R 23
L 94
I
I
L 79
L 87
L 47
L 85
L 49
L 7
I
I
R 97
R 15
I
R 66
L 8
R 62
R 68
I
I
R 32
R 24
R 36
L 60
R 75
R 77
I
L 42
I
L 61
I
I
R 78
R 51
L 98
I
L 77
I
I...

output:

2556

result:

ok 1 number(s): "2556"

Test #6:

score: 0
Accepted
time: 8ms
memory: 19644kb

input:

rtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtr
100
R 27
R 68
I
L 29
L 51
L 19
L 12
L 10
L 52
L 38
L 17
R 30
L 29
L 51
L 17
R 29
I
R 96
R 50
R 56
I
I
I
L 73
L 15
I
R 1
R 81
L 94
R 27
R 52
R 57
R 44
I
I
L 53
I
R 87
L 39
L 25
I
I
R 25
I
I
I
L 88
L ...

output:

116

result:

ok 1 number(s): "116"

Test #7:

score: 0
Accepted
time: 2ms
memory: 19640kb

input:

tcldtcldtcldtcldtcldtcldtcldtcldtcld
100
L 20
I
I
I
L 20
R 13
L 16
L 19
R 10
I
I
I
L 11
R 30
R 30
I
L 35
I
L 28
R 23
R 24
L 20
R 15
I
I
L 13
I
R 1
I
R 6
I
I
L 22
I
L 22
R 22
L 30
L 30
I
I
I
R 35
I
R 3
L 1
R 4
I
R 11
R 2
R 21
R 15
I
R 5
L 2
L 4
L 7
L 19
L 29
R 8
I
L 24
I
I
I
L 29
I
R 35
R 32
I
R 14
L...

output:

703

result:

ok 1 number(s): "703"

Test #8:

score: 0
Accepted
time: 8ms
memory: 19616kb

input:

wflbkhwflbkhwflbkhwflbkhwflbkhwflbkh
100
I
R 28
R 13
R 7
R 29
I
I
I
R 25
R 10
R 23
I
R 26
I
I
L 18
I
R 18
L 6
I
I
R 8
R 8
I
R 6
L 16
I
R 2
R 17
L 31
R 31
L 22
R 26
L 21
L 20
R 10
L 13
R 33
R 13
R 35
R 22
L 2
L 4
R 19
L 32
L 25
I
L 31
R 10
R 17
R 15
L 6
L 9
R 31
R 20
I
I
R 4
I
L 30
L 30
L 2
R 18
R 35...

output:

442

result:

ok 1 number(s): "442"

Test #9:

score: 0
Accepted
time: 8ms
memory: 19440kb

input:

mzgaokjwpmzgaokjwpmzgaokjwpmzgaokjwp
100
R 10
I
L 24
L 8
I
L 19
L 25
I
I
R 27
R 24
I
I
L 16
I
I
L 35
R 14
I
L 23
R 17
R 16
R 4
R 4
L 29
I
R 11
R 9
R 15
I
L 18
I
I
L 25
R 13
L 24
I
I
L 8
I
I
I
I
L 24
I
I
L 19
L 23
I
L 20
R 35
L 31
I
I
R 27
I
I
I
L 35
R 16
L 10
R 28
R 14
I
I
R 30
R 18
L 16
L 6
L 12
R ...

output:

280

result:

ok 1 number(s): "280"

Test #10:

score: 0
Accepted
time: 2ms
memory: 19396kb

input:

gtvcymjngzntgtvcymjngzntgtvcymjngznt
100
L 33
L 5
R 31
R 18
I
R 14
R 9
L 1
I
R 1
R 15
L 15
I
I
I
L 13
R 7
I
I
L 2
I
L 3
I
L 19
L 22
L 2
R 32
I
L 1
R 24
R 23
I
R 25
L 11
R 34
R 25
I
L 25
R 22
R 34
I
I
L 2
R 13
L 3
I
L 30
I
R 7
R 20
I
R 24
L 34
R 23
I
L 26
R 22
I
I
I
R 17
I
I
L 14
R 27
R 35
I
L 34
L 3...

output:

206

result:

ok 1 number(s): "206"

Test #11:

score: 0
Accepted
time: 8ms
memory: 19504kb

input:

dvaauyemcqhrmduoumdvaauyemcqhrmduoum
100
L 21
R 12
R 30
L 13
I
I
L 1
L 31
R 4
L 20
I
L 6
I
L 29
R 19
L 12
R 25
R 25
I
R 21
I
L 12
L 25
R 35
L 8
R 7
R 29
I
R 4
L 24
R 29
I
I
I
L 12
L 24
R 19
L 33
L 4
I
R 35
I
R 16
I
R 10
I
R 18
R 7
L 33
I
I
R 22
L 16
L 7
L 20
R 32
I
I
R 27
I
L 9
R 16
I
I
R 32
I
R 1
L...

output:

180

result:

ok 1 number(s): "180"

Test #12:

score: 0
Accepted
time: 8ms
memory: 19428kb

input:

pkmsckbnjeeojagpdtfxlmlgofbrygcuqiahynrwooxgdruurdgxoowrnyhaiqucgyrbfoglmlxftdpgajoeejnbkcsmkplhxxhl
100
L 14
R 54
L 88
L 66
L 38
R 91
I
I
I
I
R 56
L 4
L 76
R 12
L 86
I
I
I
I
R 52
L 98
L 98
L 39
R 60
L 14
R 23
R 92
R 99
L 71
I
I
I
I
L 1
R 33
I
R 65
L 72
I
I
I
R 20
R 48
L 81
L 7
I
R 72
R 14
I
I
R 10
...

output:

75

result:

ok 1 number(s): "75"

Test #13:

score: 0
Accepted
time: 8ms
memory: 19644kb

input:

txgcggvgarkkflejgkaukutnsjogrglpdmocuhyiboientoffaaaffotneiobiyhucomdplgrgojsntukuakgjelfkkragvggcgxt
100
R 35
R 84
I
R 68
R 24
L 42
L 24
R 16
R 80
R 95
L 9
L 26
L 96
R 64
I
R 56
I
L 5
R 83
R 2
R 57
R 28
I
R 17
I
R 11
I
R 100
L 42
I
L 89
I
L 91
I
I
R 78
I
R 30
L 6
I
L 56
L 48
R 79
L 8
I
R 5
L 25
R 2...

output:

76

result:

ok 1 number(s): "76"

Test #14:

score: 0
Accepted
time: 8ms
memory: 19472kb

input:

qhygenaiejhluibjfyjbdoslylsodbjyfjbiulhjeianegyhqydgoxbmbcuslmfqgraeqkpuerbnbreupkqeargqfmlsucbmbxogdy
100
L 41
R 73
R 41
I
R 59
R 77
I
I
R 21
L 5
R 30
R 3
L 94
I
L 36
R 2
R 85
L 39
L 17
R 47
I
R 86
L 30
R 38
R 80
I
R 39
I
I
L 99
I
L 15
I
L 76
L 68
L 91
I
R 71
R 36
L 14
L 15
I
L 63
R 71
I
L 38
I
R 3...

output:

48

result:

ok 1 number(s): "48"

Test #15:

score: -100
Time Limit Exceeded

input:

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy...

output:

20000100000

result: