QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#466389#5504. Flower GardenBalintRRE 2ms7664kbC++205.0kb2024-07-07 19:30:412024-07-07 19:30:41

Judging History

你现在查看的是最新测评结果

  • [2024-07-07 19:30:41]
  • 评测
  • 测评结果:RE
  • 用时:2ms
  • 内存:7664kb
  • [2024-07-07 19:30:41]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

typedef unsigned uint;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef vector<pii> vpii;
typedef complex<double> cpx;
template <typename T> using minPq = priority_queue<T, vector<T>, greater<T>>;
#define ms(a, x) memset(a, x, sizeof(a))
#define pb push_back
#define fs first
#define sn second
#define ALL(v) begin(v), end(v)
#define SZ(v) ((int) (v).size())
#define lbv(v, x) (lower_bound(ALL(v), x) - (v).begin())
#define ubv(v, x) (upper_bound(ALL(v), x) - (v).begin())
template <typename T> inline void UNIQUE(vector<T> &v){sort(ALL(v)); v.resize(unique(ALL(v)) - v.begin());}
const int INF = 0x3f3f3f3f;
const ll LLINF = 0x3f3f3f3f3f3f3f3f;
const double PI = acos(-1);
#define FR(i, n) for(int i = 0; i < (n); i++)
#define FOR(i, a, b) for(int i = (a); i < (b); i++)
#define FORR(i, a, b) for(int i = (a); i >= (b); i--)
#define dbg(x) {cerr << #x << ' ' << x << endl;}
#define dbgArr(arr, n) {cerr << #arr; FR(_i, n) cerr << ' ' << (arr)[_i]; cerr << endl;}
template <typename T, typename U>
ostream& operator<<(ostream &os, pair<T, U> p){return os << "(" << p.fs << ", " << p.sn << ")";}

const int MN = 3e5 + 5;
int n, m;
vi adjList[MN], gAdjList[MN], rgAdjList[MN], groups[MN];
int gi, *gid;
string res;

namespace Graph {
    int q, tsz, qOffs;

    struct Tree {
        int offs;

        int getNode(int i){
            if(i >= tsz) return i-tsz;
            return offs+i;
        }

        vi query(int l, int r){
            vi res;
            for(l += tsz, r += tsz; l < r; l >>= 1, r >>= 1){
                if(l & 1) res.pb(getNode(l++));
                if(r & 1) res.pb(getNode(--r));
            }
            return res;
        }
    };

    Tree upTree, downTree;

    void genGraph(){
        tsz = 2 << __lg(max(1, m-1));
        upTree.offs = tsz;
        downTree.offs = tsz*2;
        qOffs = tsz*3;

        FORR(i, tsz*2-1, 2){
            adjList[upTree.getNode(i)].pb(upTree.getNode(i/2));
            adjList[downTree.getNode(i/2)].pb(downTree.getNode(i));
        }

        cin >> q;
        FR(i, q){
            int a, b, c, d;
            cin >> a >> b >> c >> d;
            a--; c--;
            //FOR(x, c, d) FOR(y, a, b) adjList[x].pb(y);
            vi vec1 = upTree.query(c, d);
            vi vec2 = downTree.query(a, b);
            for(int n1 : vec1) adjList[n1].pb(qOffs+i);
            for(int n1 : vec2) adjList[qOffs+i].pb(n1);
        }
        //n = m;
        //return;

        n = qOffs+q;
    }
}

namespace SCC {
    vi stk;
    int init[MN], lo[MN], ti;

    void dfs(int n1){
        stk.pb(n1);
        init[n1] = lo[n1] = ++ti;
        for(int n2 : adjList[n1]){
            if(!init[n2]) dfs(n2);
            if(init[n2] >= 0) lo[n1] = min(lo[n1], lo[n2]);
        }
        if(init[n1] == lo[n1]){
            while(true){
                int n2 = stk.back();
                stk.pop_back();
                if(n2 < m) groups[gi].pb(n2);
                init[n2] = ~gi;
                if(n2 == n1) break;
            }
            gi++;
        }
    }

    void genGroups(){
        gid = init;
        ti = 0;
        FR(i, n) if(!init[i]) dfs(i);
        assert(stk.empty());
    }
}

namespace DAG {
    int inDeg[MN], outDeg[MN], sm;

    void dfs1(int n1){
        if(sm + SZ(groups[n1]) > m+m) return;
        sm += SZ(groups[n1]);
        for(int a : groups[n1]) res[a] = 'F';
        for(int n2 : gAdjList[n1]) if(!--inDeg[n2]) dfs1(n2);
    }

    void dfs2(int n1){
        if(sm + SZ(groups[n1]) > m+m) return;
        sm += SZ(groups[n1]);
        for(int a : groups[n1]) res[a] = 'R';
        for(int n2 : rgAdjList[n1]) if(!--outDeg[n2]) dfs1(n2);
    }

    bool solve(){
        //FR(i, gi) dbgArr(groups[i], SZ(groups[i]));

        FR(i, gi) inDeg[i] = outDeg[i] = 0;
        FR(n1, n) for(int n2 : adjList[n1]) if(gid[n1] != gid[n2]){
            gAdjList[~gid[n1]].pb(~gid[n2]);
            rgAdjList[~gid[n2]].pb(~gid[n1]);
            inDeg[~gid[n2]]++;
            outDeg[~gid[n1]]++;
            //cerr << ~gid[n1] << ' ' << ~gid[n2] << endl;
        }
        m /= 3;

        sm = 0;
        res.assign(m*3, 'R');
        FR(i, gi) if(!inDeg[i]) dfs1(i);
        //dbg(sm);
        if(sm >= m) return true;

        sm = 0;
        res.assign(m*3, 'F');
        FR(i, gi) if(!outDeg[i]) dfs2(i);
        //dbg(sm);
        if(sm >= m) return true;

        return false;
    }
}

void solve(){
    cin >> m;
    m *= 3;
    Graph::genGraph();
    SCC::genGroups();
    if(!DAG::solve()) res = "";
}

int main(){
    cin.sync_with_stdio(0); cin.tie(0);
    int t; cin >> t;
    while(t--){
        solve();
        if(res.empty()) cout << "NIE\n";
        else cout << "TAK\n" << res << '\n';

        FR(i, n) adjList[i].clear(), gid[i] = 0;
        FR(i, gi) gAdjList[i].clear(), groups[i].clear();
        gi = 0;
    }
}

详细

Test #1:

score: 100
Accepted
time: 2ms
memory: 7664kb

input:

2
1 3
1 1 2 2
1 2 3 3
1 1 3 3
1 3
1 1 2 2
2 2 3 3
3 3 1 1

output:

TAK
RFF
NIE

result:

ok good!

Test #2:

score: -100
Runtime Error

input:

10
33333 100000
28701 40192 93418 95143
95902 97908 78378 78461
36823 44196 22268 23996
23977 24786 33315 48829
83965 90411 4923 8445
20235 21177 32543 47454
29598 35414 72477 73049
2014 12632 42163 46466
64305 65518 98825 99552
32331 41625 92772 96224
26500 54122 76990 77126
18249 20335 31165 36080...

output:


result: