QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#460334 | #8830. Breaking Bad | ucup-team133 | TL | 0ms | 3820kb | C++23 | 25.5kb | 2024-07-01 14:05:55 | 2024-07-01 14:05:55 |
Judging History
answer
#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif
template <class T> std::istream& operator>>(std::istream& is, std::vector<T>& v) {
for (auto& e : v) {
is >> e;
}
return is;
}
template <class T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {
for (std::string_view sep = ""; const auto& e : v) {
os << std::exchange(sep, " ") << e;
}
return os;
}
template <class T, class U = T> bool chmin(T& x, U&& y) {
return y < x and (x = std::forward<U>(y), true);
}
template <class T, class U = T> bool chmax(T& x, U&& y) {
return x < y and (x = std::forward<U>(y), true);
}
template <class T> void mkuni(std::vector<T>& v) {
std::ranges::sort(v);
auto result = std::ranges::unique(v);
v.erase(result.begin(), result.end());
}
template <class T> int lwb(const std::vector<T>& v, const T& x) {
return std::distance(v.begin(), std::ranges::lower_bound(v, x));
}
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
template <typename T> struct Matrix {
std::vector<std::vector<T>> A;
Matrix() = default;
Matrix(int n, int m) : A(n, std::vector<T>(m, 0)) {}
Matrix(int n) : A(n, std::vector<T>(n, 0)) {}
bool empty() const { return A.empty(); }
int size() const { return A.size(); }
int height() const { return A.size(); }
int width() const {
assert(not A.empty());
return A[0].size();
}
inline const std::vector<T>& operator[](int i) const { return A[i]; }
inline std::vector<T>& operator[](int i) { return A[i]; }
static Matrix identity(int n) {
Matrix res(n);
for (int i = 0; i < n; i++) res[i][i] = 1;
return res;
}
Matrix& operator+=(const Matrix& B) {
int n = height(), m = width();
assert(n == B.height() and m == B.width());
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
(*this)[i][j] += B[i][j];
}
}
return *this;
}
Matrix& operator-=(const Matrix& B) {
int n = height(), m = width();
assert(n == B.height() and m == B.width());
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
(*this)[i][j] -= B[i][j];
}
}
return *this;
}
Matrix& operator*=(const Matrix& B) {
int n = height(), m = B.width(), p = width();
assert(p == B.height());
std::vector<std::vector<T>> C(n, std::vector<T>(m, 0));
for (int i = 0; i < n; i++) {
for (int k = 0; k < p; k++) {
for (int j = 0; j < m; j++) {
C[i][j] += (*this)[i][k] * B[k][j];
}
}
}
std::swap(A, C);
return *this;
}
Matrix& operator*=(const T& v) {
for (int i = 0; i < height(); i++) {
for (int j = 0; j < width(); j++) {
(*this)[i][j] *= v;
}
}
return *this;
}
Matrix& operator/=(const T& v) {
T inv = T(1) / v;
for (int i = 0; i < height(); i++) {
for (int j = 0; j < width(); j++) {
(*this)[i][j] *= inv;
}
}
return *this;
}
Matrix operator-() const {
Matrix res(height(), width());
for (int i = 0; i < height(); i++) {
for (int j = 0; j < width(); j++) {
res[i][j] = -(*this)[i][j];
}
}
return res;
}
Matrix operator+(const Matrix& B) const { return Matrix(*this) += B; }
Matrix operator-(const Matrix& B) const { return Matrix(*this) -= B; }
Matrix operator*(const Matrix& B) const { return Matrix(*this) *= B; }
Matrix operator*(const T& v) const { return Matrix(*this) *= v; }
Matrix operator/(const T& v) const { return Matrix(*this) /= v; }
bool operator==(const Matrix& B) const {
assert(height() == B.height() && width() == B.width());
return A == B.A;
}
bool operator!=(const Matrix& B) const {
assert(height() == B.height() && width() == B.width());
return A != B.A;
}
Matrix pow(long long n) const {
assert(0 <= n);
Matrix x = *this, r = identity(size());
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
Matrix transpose() const {
Matrix res(width(), height());
for (int i = 0; i < height(); i++) {
for (int j = 0; j < width(); j++) {
res[j][i] = (*this)[i][j];
}
}
return res;
}
int rank() const { return Matrix(*this).gauss_jordan().first; }
T det() const { return Matrix(*this).gauss_jordan().second; }
Matrix inv() const {
assert(height() == width());
int n = height();
Matrix B(*this);
for (int i = 0; i < n; i++) {
B[i].resize(2 * n, T(0));
B[i][n + i] = T(1);
}
int rank = B.gauss_jordan(n).first;
if (rank != n) return {};
for (int i = 0; i < n; i++) {
B[i].erase(B[i].begin(), B[i].begin() + n);
}
return B;
}
std::vector<std::vector<T>> system_of_linear_equations(const std::vector<T>& b) const {
assert(height() == int(b.size()));
int n = height(), m = width();
Matrix B(*this);
for (int i = 0; i < n; i++) B[i].emplace_back(b[i]);
int rank = B.gauss_jordan(m).first;
for (int i = rank; i < n; i++) {
if (B[i][m] != T(0)) {
return {};
}
}
std::vector<std::vector<T>> res(1, std::vector<T>(m, 0));
std::vector<int> pivot(m, -1);
for (int i = 0, j = 0; i < rank; i++) {
while (B[i][j] == T(0)) j++;
res[0][j] = B[i][m];
pivot[j] = i;
}
for (int j = 0; j < m; j++) {
if (pivot[j] != -1) continue;
std::vector<T> x(m);
x[j] = 1;
for (int k = 0; k < j; k++) {
if (pivot[k] != -1) {
x[k] = -B[pivot[k]][j];
}
}
res.emplace_back(x);
}
return res;
}
friend std::ostream& operator<<(std::ostream& os, const Matrix& p) {
int n = p.height(), m = p.width();
os << "[(" << n << " * " << m << " Matrix)";
os << "\n[columun sums: ";
for (int j = 0; j < m; j++) {
T sum = 0;
for (int i = 0; i < n; i++) sum += p[i][j];
os << sum << (j + 1 < m ? "," : "");
}
os << "]";
for (int i = 0; i < n; i++) {
os << "\n[";
for (int j = 0; j < m; j++) os << p[i][j] << (j + 1 < m ? "," : "");
os << "]";
}
os << "]\n";
return os;
}
private:
std::pair<int, T> gauss_jordan(int pivot_end = -1) {
if (empty()) return {0, T(1)};
if (pivot_end == -1) pivot_end = width();
int rank = 0;
T det = 1;
for (int j = 0; j < pivot_end; j++) {
int pivot = -1;
for (int i = rank; i < height(); i++) {
if ((*this)[i][j] != T(0)) {
pivot = i;
break;
}
}
if (pivot == -1) {
det = 0;
continue;
}
if (pivot != rank) {
det = -det;
std::swap((*this)[pivot], (*this)[rank]);
}
det *= A[rank][j];
if (A[rank][j] != T(1)) {
T coef = T(1) / (*this)[rank][j];
for (int k = j; k < width(); k++) (*this)[rank][k] *= coef;
}
for (int i = 0; i < height(); i++) {
if (i == rank) continue;
T coef = (*this)[i][j];
if (coef == T(0)) continue;
for (int k = j; k < width(); k++) (*this)[i][k] -= (*this)[rank][k] * coef;
}
rank++;
}
return {rank, det};
}
};
struct RandomNumberGenerator {
std::mt19937 mt;
RandomNumberGenerator() : mt(std::chrono::steady_clock::now().time_since_epoch().count()) {}
uint32_t operator()(uint32_t a, uint32_t b) {
std::uniform_int_distribution<uint32_t> dist(a, b - 1);
return dist(mt);
}
uint32_t operator()(uint32_t b) { return (*this)(0, b); }
template <typename T> void shuffle(std::vector<T>& v) {
for (int i = 0; i < int(v.size()); i++) std::swap(v[i], v[(*this)(0, i + 1)]);
}
};
struct RandomNumberGenerator64 {
std::mt19937_64 mt;
RandomNumberGenerator64() : mt(std::chrono::steady_clock::now().time_since_epoch().count()) {}
uint64_t operator()(uint64_t a, uint64_t b) {
std::uniform_int_distribution<uint64_t> dist(a, b - 1);
return dist(mt);
}
uint64_t operator()(uint64_t b) { return (*this)(0, b); }
template <typename T> void shuffle(std::vector<T>& v) {
for (int i = 0; i < int(v.size()); i++) std::swap(v[i], v[(*this)(0, i + 1)]);
}
};
using ll = long long;
using namespace std;
constexpr int MOD = 754974721, Root = atcoder::internal::primitive_root_constexpr(MOD), MAX = 5;
using mint = atcoder::static_modint<MOD>;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
int n;
cin >> n;
vector a(n, vector<int>(n));
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cin >> a[i][j];
}
}
RandomNumberGenerator rng;
mint root = mint(Root).pow((MOD - 1) / 5);
vector z(n, vector<mint>(n));
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
z[i][j] = rng(MOD);
}
}
vector<mint> f(MAX);
for (int k = 0; k < MAX; k++) {
Matrix<mint> m(n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
m[i][j] = z[i][j] * root.pow(k * a[i][j]);
}
}
f[k] = m.det();
}
for (int i = 0; i < MAX; i++) {
mint sum = 0;
for (int j = 0; j < MAX; j++) sum += f[j] * root.pow((MAX - i) * j % MAX);
cout << (sum != 0 ? "Y" : "N");
}
cout << "\n";
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3524kb
input:
2 0 4 4 0
output:
YNNYN
result:
ok "YNNYN"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3772kb
input:
2 1 1 1 1
output:
NNYNN
result:
ok "NNYNN"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3736kb
input:
4 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0
output:
YYYYN
result:
ok "YYYYN"
Test #4:
score: 0
Accepted
time: 0ms
memory: 3620kb
input:
4 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0
output:
YYYYN
result:
ok "YYYYN"
Test #5:
score: 0
Accepted
time: 0ms
memory: 3760kb
input:
10 1 4 2 0 0 2 0 1 3 3 0 3 1 4 4 1 4 0 2 2 1 4 2 0 0 2 0 1 0 3 0 3 1 4 4 1 4 0 2 2 4 2 0 3 3 0 3 4 1 1 2 0 3 1 1 3 1 2 4 4 4 2 0 3 3 0 3 4 1 1 2 0 3 1 1 3 1 2 4 4 1 4 2 0 0 2 0 1 3 3 3 1 4 2 2 4 2 3 0 0
output:
NYNNY
result:
ok "NYNNY"
Test #6:
score: 0
Accepted
time: 0ms
memory: 3604kb
input:
10 4 4 4 1 3 4 1 4 3 0 3 3 3 0 2 3 0 3 2 4 3 3 3 0 2 3 0 3 2 4 4 4 4 1 3 4 1 4 3 0 2 2 2 4 1 2 4 2 1 3 2 2 2 4 1 3 4 2 1 3 4 4 4 1 3 4 1 4 3 0 3 3 3 0 2 3 0 3 2 4 2 2 2 4 1 2 4 2 1 3 4 4 4 1 3 4 1 1 3 0
output:
YYYNY
result:
ok "YYYNY"
Test #7:
score: 0
Accepted
time: 0ms
memory: 3812kb
input:
10 1 2 0 4 2 3 4 0 2 3 0 1 4 3 1 2 3 4 1 2 4 0 3 2 0 1 2 3 0 1 1 2 0 4 2 3 4 0 2 3 3 4 2 1 4 0 1 2 4 0 0 1 4 3 1 2 3 4 1 2 2 3 1 0 3 4 0 1 3 4 3 1 1 1 4 0 1 2 4 0 1 2 0 4 2 3 4 0 2 3 1 3 0 4 2 3 4 0 2 3
output:
NYYYY
result:
ok "NYYYY"
Test #8:
score: 0
Accepted
time: 0ms
memory: 3600kb
input:
10 3 4 0 3 2 2 0 4 0 2 0 1 2 0 4 4 2 1 2 4 2 3 4 2 1 1 4 3 4 1 0 1 2 0 4 4 2 1 2 4 0 1 2 0 4 4 2 1 2 4 0 1 2 0 4 4 2 1 2 4 3 4 0 3 2 2 0 4 0 2 0 1 2 0 4 4 2 1 2 4 3 4 0 3 2 2 0 4 0 2 0 1 2 0 4 4 2 1 2 4
output:
NYNNN
result:
ok "NYNNN"
Test #9:
score: 0
Accepted
time: 0ms
memory: 3548kb
input:
10 4 1 3 1 2 0 3 2 4 4 0 2 4 2 3 1 4 3 0 0 1 1 1 1 2 0 3 2 4 1 2 4 1 4 0 3 1 0 2 2 1 3 0 3 4 2 0 4 1 1 2 4 1 4 0 3 1 0 2 2 2 4 1 4 0 3 1 0 2 2 0 2 4 2 3 1 4 3 0 0 3 0 2 1 1 4 2 1 3 3 4 1 3 1 2 0 3 2 4 4
output:
YYYYY
result:
ok "YYYYY"
Test #10:
score: 0
Accepted
time: 0ms
memory: 3820kb
input:
10 1 2 0 2 4 2 3 1 2 1 4 0 3 0 2 0 1 4 0 4 0 1 4 1 3 1 2 0 1 0 0 1 4 1 3 1 2 0 1 0 3 4 2 4 1 4 0 3 4 3 4 0 3 0 2 0 1 4 0 4 0 1 4 1 3 1 2 0 1 0 0 1 4 1 3 1 2 0 1 0 3 4 2 4 1 4 0 3 4 3 0 1 4 1 3 1 2 0 1 0
output:
NNNYN
result:
ok "NNNYN"
Test #11:
score: 0
Accepted
time: 0ms
memory: 3528kb
input:
10 1 4 1 2 1 3 3 2 1 2 0 3 0 1 0 2 2 1 0 1 0 4 0 3 0 2 2 1 0 1 1 4 1 2 1 3 3 2 1 2 4 2 4 0 4 1 1 0 4 0 1 1 1 4 1 0 3 2 1 2 0 0 0 1 0 2 2 1 0 1 2 0 2 3 2 4 4 3 2 3 2 0 2 3 2 4 4 3 2 3 2 0 2 3 2 4 4 3 2 3
output:
YYYYY
result:
ok "YYYYY"
Test #12:
score: 0
Accepted
time: 0ms
memory: 3768kb
input:
10 1 2 0 1 4 0 1 2 2 2 1 2 0 1 4 3 1 2 2 2 0 1 4 0 3 1 0 1 1 1 1 2 0 1 4 3 1 2 2 2 3 4 2 3 1 4 3 4 4 4 0 1 4 0 3 1 0 1 1 1 4 0 3 4 2 0 4 0 0 0 3 4 2 3 1 4 3 4 4 4 4 0 3 4 2 0 4 0 0 0 0 1 4 0 3 1 0 1 1 1
output:
YNYNY
result:
ok "YNYNY"
Test #13:
score: 0
Accepted
time: 0ms
memory: 3520kb
input:
10 1 3 0 0 2 1 3 4 3 3 3 3 0 0 4 1 3 4 3 3 1 1 3 3 2 4 1 2 1 1 2 4 1 1 3 2 4 0 4 4 4 1 3 3 0 4 1 2 1 1 2 4 1 1 3 2 4 0 4 4 0 2 4 4 1 0 2 3 2 2 3 0 2 2 4 3 0 1 0 0 3 0 2 2 4 3 0 1 0 0 4 2 4 4 1 0 2 3 2 2
output:
YYYNY
result:
ok "YYYNY"
Test #14:
score: 0
Accepted
time: 0ms
memory: 3760kb
input:
10 2 0 3 1 3 0 0 0 4 1 1 4 2 0 2 4 4 4 3 0 2 0 3 1 3 0 0 0 4 1 1 4 2 0 2 4 4 4 3 0 1 4 2 0 2 4 4 4 3 0 3 3 4 2 4 1 1 1 0 2 3 1 4 2 4 1 1 1 0 2 4 2 0 3 0 2 2 2 1 3 3 1 4 2 4 1 1 1 0 2 1 4 2 0 2 4 4 4 3 0
output:
YNYNN
result:
ok "YNYNN"
Test #15:
score: -100
Time Limit Exceeded
input:
1000 3 4 1 2 4 1 0 3 0 4 1 4 3 1 4 4 1 0 1 2 3 1 0 1 3 4 4 0 3 0 3 2 2 1 0 4 1 3 3 0 3 1 3 2 2 0 3 3 2 2 3 0 4 2 1 2 1 2 1 4 2 4 1 4 2 4 3 2 0 3 0 4 2 1 2 3 3 0 2 0 3 3 1 1 0 3 4 3 2 0 4 0 3 4 4 2 3 4 2 3 4 2 1 3 2 2 4 1 0 2 2 4 0 1 2 0 4 1 3 2 3 2 2 2 1 4 4 4 2 0 0 4 4 1 3 4 0 2 2 3 1 1 3 2 3 2 3 0...