QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#460270#8468. Collinear ArrangementspropaneTL 72ms4140kbC++2016.5kb2024-07-01 12:54:582024-07-01 12:54:59

Judging History

你现在查看的是最新测评结果

  • [2024-07-01 12:54:59]
  • 评测
  • 测评结果:TL
  • 用时:72ms
  • 内存:4140kb
  • [2024-07-01 12:54:58]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;
using LL = long long;
using point_t = long long; //全局数据类型,可修改为 long long 等

const point_t eps = 1e-8;
const long double PI = acosl(-1);
//const long double PI = numbers::pi_v<long double>;

// 点与向量
template <typename T>
struct point{
    T x, y;

    bool operator==(const point &a) const { return (abs(x - a.x) <= eps && abs(y - a.y) <= eps); }
    bool operator<(const point &a) const{
        if (abs(x - a.x) <= eps)
            return y < a.y - eps;
        return x < a.x - eps;
    }
    bool operator>(const point &a) const { return !(*this < a || *this == a); }
    point operator+(const point &a) const { return {x + a.x, y + a.y}; }
    point operator-(const point &a) const { return {x - a.x, y - a.y}; }
    point operator-() const { return {-x, -y}; }
    point operator*(const T k) const { return {k * x, k * y}; }
    point operator/(const T k) const { return {x / k, y / k}; }
    T operator*(const point &a) const { return x * a.x + y * a.y; } // 点积
    T operator^(const point &a) const { return x * a.y - y * a.x; } // 叉积,注意优先级
    int toleft(const point &a) const
    {
        const auto t = (*this) ^ a;
        return (t > eps) - (t < -eps);
    }                                                             // to-left 测试
    T len2() const { return (*this) * (*this); }                  // 向量长度的平方
    T dis2(const point &a) const { return (a - (*this)).len2(); } // 两点距离的平方

    // 涉及浮点数
    long double len() const { return sqrtl(len2()); }                                                                      // 向量长度
    long double dis(const point &a) const { return sqrtl(dis2(a)); }                                                       // 两点距离
    long double ang(const point &a) const { return acosl(max(-1.0l, min(1.0l, ((*this) * a) / (len() * a.len())))); }      // 向量夹角
    point rot(const long double rad) const { return {x * cosl(rad) - y * sinl(rad), x * sinl(rad) + y * cosl(rad)}; }          // 逆时针旋转(给定角度)
    point rot(const long double cosr, const long double sinr) const { return {x * cosr - y * sinr, x * sinr + y * cosr}; } // 逆时针旋转(给定角度的正弦与余弦)
};

using Point = point<point_t>;

// 极角排序
struct argcmp
{
    bool operator()(const Point &a, const Point &b) const
    {
        const auto quad = [](const Point &a)
        {
            if (a.y < -eps)
                return 1;
            if (a.y > eps)
                return 4;
            if (a.x < -eps)
                return 5;
            if (a.x > eps)
                return 3;
            return 2;
        };
        const int qa = quad(a), qb = quad(b);
        if (qa != qb)
            return qa < qb;
        const auto t = a ^ b;
        // if (abs(t)<=eps) return a*a<b*b-eps;  // 不同长度的向量需要分开
        return t > eps;
    }
};

// 直线
template <typename T>
struct line
{
    point<T> p, v; // p 为直线上一点,v 为方向向量

    bool operator==(const line &a) const { return v.toleft(a.v) == 0 && v.toleft(p - a.p) == 0; }
    int toleft(const point<T> &a) const { return v.toleft(a - p); } // to-left 测试
    bool operator<(const line &a) const                             // 半平面交算法定义的排序
    {
        if (abs(v ^ a.v) <= eps && v * a.v >= -eps)
            return toleft(a.p) == -1;
        return argcmp()(v, a.v);
    }

    // 涉及浮点数
    point<T> inter(const line &a) const { return p + v * ((a.v ^ (p - a.p)) / (v ^ a.v)); } // 直线交点
    long double dis(const point<T> &a) const { return abs(v ^ (a - p)) / v.len(); }         // 点到直线距离
    point<T> proj(const point<T> &a) const { return p + v * ((v * (a - p)) / (v * v)); }    // 点在直线上的投影
    point<T> symmetry(const point<T> &a) const { return proj(a) * 2 - a;}                    // 点关于直线的对称点 
};

using Line = line<point_t>;

//线段
template <typename T>
struct segment
{
    point<T> a, b;

    bool operator<(const segment &s) const { return make_pair(a, b) < make_pair(s.a, s.b); }

    // 判定性函数建议在整数域使用

    // 判断点是否在线段上
    // -1 点在线段端点 | 0 点不在线段上 | 1 点严格在线段上
    int is_on(const point<T> &p) const
    {
        if (p == a || p == b)
            return -1;
        return (p - a).toleft(p - b) == 0 && (p - a) * (p - b) < -eps;
    }

    // 判断线段直线是否相交
    // -1 直线经过线段端点 | 0 线段和直线不相交 | 1 线段和直线严格相交
    int is_inter(const line<T> &l) const
    {
        if (l.toleft(a) == 0 || l.toleft(b) == 0)
            return -1;
        return l.toleft(a) != l.toleft(b);
    }

    // 判断两线段是否相交
    // -1 在某一线段端点处相交 | 0 两线段不相交 | 1 两线段严格相交
    int is_inter(const segment<T> &s) const
    {
        if (is_on(s.a) || is_on(s.b) || s.is_on(a) || s.is_on(b))
            return -1;
        const line<T> l{a, b - a}, ls{s.a, s.b - s.a};
        return l.toleft(s.a) * l.toleft(s.b) == -1 && ls.toleft(a) * ls.toleft(b) == -1;
    }

    // 点到线段距离
    long double dis(const point<T> &p) const
    {
        if ((p - a) * (b - a) < -eps || (p - b) * (a - b) < -eps)
            return min(p.dis(a), p.dis(b));
        const line<T> l{a, b - a};
        return l.dis(p);
    }

    // 两线段间距离
    long double dis(const segment<T> &s) const
    {
        if (is_inter(s))
            return 0;
        return min({dis(s.a), dis(s.b), s.dis(a), s.dis(b)});
    }

    // 只求整点交点可以不使用浮点数,避免精度问题,使用前需要先判断是否有交点 
    pair<bool, point<T> > int_inter(const segment &s){

        // 线段转为直线的一般式
        auto seg2line = [&](const segment &s){
            T A = s.a.y - s.b.y;
            T B = s.b.x - s.a.x;
            T C = -A * s.a.x - B * s.a.y;
            return array{A, B, C};
        };

        auto [A1, B1, C1] = seg2line(*this);
        auto [A2, B2, C2] = seg2line(s);
        T dx = C1 * B2 - C2 * B1;
        T dy = A1 * C2 - A2 * C1;
        T d = B1 * A2 - B2 * A1;
        if (d == 0) return {false, {}};
        if (dy % d || dx % d) return {false, {}};
        return {true, {dx / d, dy / d}};
    }

};
using Segment = segment<point_t>;

// 多边形
template <typename T>
struct polygon
{
    vector<point<T>> p; // 以逆时针顺序存储

    size_t nxt(const size_t i) const { return i == p.size() - 1 ? 0 : i + 1; }
    size_t pre(const size_t i) const { return i == 0 ? p.size() - 1 : i - 1; }

    // 回转数
    // 返回值第一项表示点是否在多边形边上
    // 对于狭义多边形,回转数为 0 表示点在多边形外,否则点在多边形内
    pair<bool, int> winding(const point<T> &a) const
    {
        int cnt = 0;
        for (size_t i = 0; i < p.size(); i++)
        {
            const point<T> u = p[i], v = p[nxt(i)];
            if (abs((a - u) ^ (a - v)) <= eps && (a - u) * (a - v) <= eps)
                return {true, 0};
            if (abs(u.y - v.y) <= eps)
                continue;
            const Line uv = {u, v - u};
            if (u.y < v.y - eps && uv.toleft(a) <= 0)
                continue;
            if (u.y > v.y + eps && uv.toleft(a) >= 0)
                continue;
            if (u.y < a.y - eps && v.y >= a.y - eps)
                cnt++;
            if (u.y >= a.y - eps && v.y < a.y - eps)
                cnt--;
        }
        return {false, cnt};
    }

    // 射线法 2表示在多边形内,1表示在多边形上,0表示在多边形外
    int is_in(const point<T> &a){
        int x = 0;
        for(size_t i = 0; i < p.size(); i++){
            segment<T> s = {p[i], p[nxt(i)]};
            if (s.is_on(a)) return 1;
            point<T> p1 = p[i] - a, p2 = p[nxt(i)] - a;
            if(p1.y > p2.y) swap(p1, p2);
            if(p1.y < eps && p2.y > eps && (p1 ^ p2) > eps) x = !x;
        }
        return x ? 2 : 0;
    }

    // 多边形面积的两倍
    // 可用于判断点的存储顺序是顺时针或逆时针
    T area() const
    {
        T sum = 0;
        for (size_t i = 0; i < p.size(); i++)
            sum += p[i] ^ p[nxt(i)];
        return sum;
    }

    // 多边形的周长
    long double circ() const
    {
        long double sum = 0;
        for (size_t i = 0; i < p.size(); i++)
            sum += p[i].dis(p[nxt(i)]);
        return sum;
    }
};

using Polygon = polygon<point_t>;

//凸多边形
template <typename T>
struct convex : polygon<T>
{
    // 闵可夫斯基和
    convex operator+(const convex &c) const
    {
        const auto &p = this->p;
        vector<Segment> e1(p.size()), e2(c.p.size()), edge(p.size() + c.p.size());
        vector<point<T>> res;
        res.reserve(p.size() + c.p.size());
        const auto cmp = [](const Segment &u, const Segment &v)
        { return argcmp()(u.b - u.a, v.b - v.a); };
        for (size_t i = 0; i < p.size(); i++)
            e1[i] = {p[i], p[this->nxt(i)]};
        for (size_t i = 0; i < c.p.size(); i++)
            e2[i] = {c.p[i], c.p[c.nxt(i)]};
        rotate(e1.begin(), min_element(e1.begin(), e1.end(), cmp), e1.end());
        rotate(e2.begin(), min_element(e2.begin(), e2.end(), cmp), e2.end());
        merge(e1.begin(), e1.end(), e2.begin(), e2.end(), edge.begin(), cmp);
        const auto check = [](const vector<point<T>> &res, const point<T> &u)
        {
            const auto back1 = res.back(), back2 = *prev(res.end(), 2);
            return (back1 - back2).toleft(u - back1) == 0 && (back1 - back2) * (u - back1) >= -eps;
        };
        auto u = e1[0].a + e2[0].a;
        for (const auto &v : edge)
        {
            while (res.size() > 1 && check(res, u))
                res.pop_back();
            res.push_back(u);
            u = u + v.b - v.a;
        }
        if (res.size() > 1 && check(res, res[0]))
            res.pop_back();
        return {res};
    }

    // 旋转卡壳
    // func 为更新答案的函数,可以根据题目调整位置
    template <typename F>
    void rotcaliper(const F &func) const
    {
        const auto &p = this->p;
        const auto area = [](const point<T> &u, const point<T> &v, const point<T> &w)
        { return (w - u) ^ (w - v); };
        for (size_t i = 0, j = 1; i < p.size(); i++)
        {
            const auto nxti = this->nxt(i);
            func(p[i], p[nxti], p[j]);
            while (area(p[this->nxt(j)], p[i], p[nxti]) >= area(p[j], p[i], p[nxti]))
            {
                j = this->nxt(j);
                func(p[i], p[nxti], p[j]);
            }
        }
    }

    // 凸多边形的直径的平方
    T diameter2() const
    {
        const auto &p = this->p;
        if (p.size() == 1)
            return 0;
        if (p.size() == 2)
            return p[0].dis2(p[1]);
        T ans = 0;
        auto func = [&](const point<T> &u, const point<T> &v, const point<T> &w)
        { ans = max({ans, w.dis2(u), w.dis2(v)}); };
        rotcaliper(func);
        return ans;
    }

    // 判断点是否在凸多边形内
    // 复杂度 O(logn)
    // -1 点在多边形边上 | 0 点在多边形外 | 1 点在多边形内
    int is_in(const point<T> &a) const
    {
        const auto &p = this->p;
        if (p.size() == 1)
            return a == p[0] ? -1 : 0;
        if (p.size() == 2)
            return segment<T>{p[0], p[1]}.is_on(a) ? -1 : 0;
        if (a == p[0])
            return -1;
        if ((p[1] - p[0]).toleft(a - p[0]) == -1 || (p.back() - p[0]).toleft(a - p[0]) == 1)
            return 0;
        const auto cmp = [&](const Point &u, const Point &v)
        { return (u - p[0]).toleft(v - p[0]) == 1; };
        const size_t i = lower_bound(p.begin() + 1, p.end(), a, cmp) - p.begin();
        if (i == 1)
            return segment<T>{p[0], p[i]}.is_on(a) ? -1 : 0;
        if (i == p.size() - 1 && segment<T>{p[0], p[i]}.is_on(a))
            return -1;
        if (segment<T>{p[i - 1], p[i]}.is_on(a))
            return -1;
        return (p[i] - p[i - 1]).toleft(a - p[i - 1]) > 0;
    }

    // 凸多边形关于某一方向的极点
    // 复杂度 O(logn)
    // 参考资料:https://codeforces.com/blog/entry/48868
    template <typename F>
    size_t extreme(const F &dir) const
    {
        const auto &p = this->p;
        const auto check = [&](const size_t i)
        { return dir(p[i]).toleft(p[this->nxt(i)] - p[i]) >= 0; };
        const auto dir0 = dir(p[0]);
        const auto check0 = check(0);
        if (!check0 && check(p.size() - 1))
            return 0;
        const auto cmp = [&](const Point &v)
        {
            const size_t vi = &v - p.data();
            if (vi == 0)
                return 1;
            const auto checkv = check(vi);
            const auto t = dir0.toleft(v - p[0]);
            if (vi == 1 && checkv == check0 && t == 0)
                return 1;
            return checkv ^ (checkv == check0 && t <= 0);
        };
        return partition_point(p.begin(), p.end(), cmp) - p.begin();
    }

    // 过凸多边形外一点求凸多边形的切线,返回切点下标
    // 复杂度 O(logn)
    // 必须保证点在多边形外
    pair<size_t, size_t> tangent(const point<T> &a) const
    {
        const size_t i = extreme([&](const point<T> &u)
                                 { return u - a; });
        const size_t j = extreme([&](const point<T> &u)
                                 { return a - u; });
        return {i, j};
    }

    // 求平行于给定直线的凸多边形的切线,返回切点下标
    // 复杂度 O(logn)
    pair<size_t, size_t> tangent(const line<T> &a) const
    {
        const size_t i = extreme([&](...)
                                 { return a.v; });
        const size_t j = extreme([&](...)
                                 { return -a.v; });
        return {i, j};
    }
};

using Convex = convex<point_t>;

int main(){

#ifdef LOCAL
    freopen("data.in", "r", stdin);
    freopen("data.out", "w", stdout);
#endif

    cin.tie(0);
    cout.tie(0);
    ios::sync_with_stdio(0);

    int n, m;
    cin >> n >> m;
    Convex convex;
    vector<Point> p(n);
    for(int i = 0; i < n; i++){
        cin >> p[i].x >> p[i].y;
    }
    convex.p = p;
    p.resize(2 * n);
    for(int i = 0; i < n; i++){
        p[i + n] = p[i];
    }
    while(m--){
        int op;
        cin >> op;
        if (op == 1){
            Point p;
            cin >> p.x >> p.y;
            map<Point, int> mp;
            for(auto &pt : convex.p){
                LL dx = pt.x - p.x;
                LL dy = pt.y - p.y;
                if (dx < 0 or (dx == 0 and dy < 0)) dx = -dx, dy = -dy;
                LL g = abs(gcd(dx, dy));
                dx /= g, dy /= g;
                mp[{dx, dy}] += 1;
            }
            LL ans = 0;
            for(auto &[x, y] : mp){
                ans += 1LL * y * (y - 1) / 2;
            }
            cout << ans << '\n';
        }
        else{
            Point p1, p2;
            cin >> p1.x >> p1.y >> p2.x >> p2.y;
            Line line = {p1, p2 - p1};
            auto [id1, id2] = convex.tangent(line);
            set<int> s;
            for(int i = -1; i <= 1; i++){
                for(auto u : {id1, id2}){
                    int id = (u + i + n) % n;
                    if (((p[id] - p1) ^ (p[id] - p2)) == 0){
                        s.insert(id);
                    }
                }
            }

            auto get = [&](int L, int R){
                if (L > R) R += n;
                int l = L, r = R;
                while(l < r){
                    int mid = (l + r) / 2;
                    if (line.toleft(p[mid]) * line.toleft(p[L]) < 0){
                        r = mid;
                    }
                    else{
                        l = mid + 1;
                    }
                }

                for(int i = -1; i <= 1; i++){
                    int id = (r + i + n) % n;
                    if (((p[id] - p1) ^ (p[id] - p2)) == 0){
                        s.insert(id);
                    }
                }
            };

            get(id1, id2);
            get(id2, id1);
            cout << s.size() << '\n';
        }
    }

}

詳細信息

Test #1:

score: 100
Accepted
time: 1ms
memory: 3416kb

input:

5 3
0 0
2 0
2 1
1 2
0 2
1 1 1
2 1 1 2 2
1 2 2

output:

1
1
2

result:

ok 3 number(s): "1 1 2"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3484kb

input:

3 1
0 0
1 0
0 1
2 1 1 2 2

output:

1

result:

ok 1 number(s): "1"

Test #3:

score: 0
Accepted
time: 1ms
memory: 3548kb

input:

1000 1
-139438978 -172098481
-125097652 -169056403
155419484 -28898293
186215972 6874955
240691742 77644763
334255616 236444333
342049790 274206233
342049766 274611851
342049472 275025569
342049298 275242193
342048794 275724449
341967248 297262013
341966000 297569423
341963012 298092233
341960624 29...

output:

2

result:

ok 1 number(s): "2"

Test #4:

score: 0
Accepted
time: 22ms
memory: 3820kb

input:

1000 1000
-468718512 100559444
-466285968 100587272
-463035240 100649294
-461326068 100761398
-459427038 100900610
-455064924 101233256
-452216364 101462348
-450021522 101653544
-449086266 101738960
-433665372 103152428
-429959922 103532498
-427457166 103795826
-418983006 104802926
-416443854 105124...

output:

1
2
2
1
1
2
1
2
1
2
1
1
1
0
0
1
2
1
1
2
0
0
0
2
0
2
2
1
1
1
1
1
1
0
0
1
1
2
1
0
1
1
0
1
1
0
0
1
0
0
1
0
0
0
2
1
2
1
0
0
1
1
2
1
1
0
1
1
2
0
1
0
0
2
1
0
1
0
0
0
1
2
1
2
0
1
0
0
1
1
0
0
0
2
2
1
0
2
1
0
1
1
1
1
1
0
1
1
1
1
2
1
1
2
1
2
2
0
2
2
0
0
0
2
1
0
0
1
0
1
1
0
0
1
0
1
0
1
0
0
0
1
1
1
1
0
0
0
2
1
...

result:

ok 1000 numbers

Test #5:

score: 0
Accepted
time: 20ms
memory: 3752kb

input:

1000 1000
291905682 -484091301
292345158 -484089105
293043996 -484085421
293229030 -484083753
294173520 -484069809
295110540 -484052169
295788516 -484035897
296416644 -484020435
297309864 -483994563
298153872 -483966843
298820190 -483943245
299094912 -483933453
299710446 -483910407
300478542 -483880...

output:

0
0
0
1
1
2
1
1
1
1
2
2
1
0
0
1
1
0
1
0
0
1
2
1
2
0
2
1
0
1
0
1
2
1
1
0
0
0
2
1
0
2
1
0
1
1
2
0
2
0
1
0
1
0
1
0
1
0
1
2
2
2
0
1
1
1
2
1
2
0
1
2
0
2
2
1
2
1
0
0
0
0
1
0
2
2
1
1
0
1
1
0
0
0
0
1
1
1
1
2
2
0
2
2
1
1
1
0
0
2
1
2
1
0
1
0
2
2
0
0
1
0
0
1
1
0
0
1
1
1
1
0
1
0
1
1
1
2
1
0
0
0
1
2
1
1
0
0
0
1
...

result:

ok 1000 numbers

Test #6:

score: 0
Accepted
time: 21ms
memory: 3652kb

input:

1000 1000
463991467 -623310294
464470495 -623309436
465819133 -623286270
467660659 -623248944
468504043 -623229894
469509451 -623204460
470851615 -623169126
471516523 -623147304
472441747 -623112894
472919839 -623093316
474518035 -623025924
474804205 -623012706
475235047 -622991898
476703709 -622918...

output:

1
1
0
2
2
2
1
1
1
0
0
1
1
0
1
1
0
1
1
0
1
2
1
1
2
1
1
1
1
0
2
0
0
1
1
1
0
1
1
2
0
0
2
2
2
1
1
1
1
1
1
1
0
1
2
1
1
1
0
2
1
1
2
1
0
1
0
2
1
1
1
1
2
1
0
0
2
1
2
0
0
2
1
2
1
0
2
1
1
0
1
1
1
2
2
1
1
2
1
1
2
1
2
0
0
0
0
0
2
1
1
1
1
1
0
0
1
1
2
0
1
0
0
1
1
0
1
0
1
1
2
1
1
2
1
2
0
1
0
1
0
2
0
0
2
0
0
2
2
0
...

result:

ok 1000 numbers

Test #7:

score: 0
Accepted
time: 18ms
memory: 3656kb

input:

1000 1000
597768588 -776829559
695444592 -772463455
710728284 -769091269
734199300 -761581069
739470810 -759493921
753859266 -752938249
776956332 -740945395
796659384 -730287457
808527768 -720807907
812395620 -716639341
825659472 -700122877
827653218 -697247683
842474466 -675492391
851577600 -653064...

output:

1
1
1
1
1
1
1
0
0
1
0
1
2
1
1
1
1
0
1
1
0
0
1
1
2
0
1
0
1
1
1
2
1
1
2
0
1
1
0
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
0
1
0
1
1
1
2
1
1
1
1
0
1
2
1
2
2
1
1
1
2
0
1
0
1
0
0
1
0
1
1
1
2
1
1
0
1
1
0
1
1
1
2
2
1
0
0
1
2
0
2
1
2
1
2
1
1
0
1
0
1
0
0
2
2
1
0
2
0
2
1
1
0
1
0
1
0
0
1
2
1
2
1
0
1
1
1
2
1
0
0
0
0
1
1
1
...

result:

ok 1000 numbers

Test #8:

score: 0
Accepted
time: 22ms
memory: 3652kb

input:

1000 1000
579713329 -733712553
582502873 -733705833
583276357 -733693923
584906899 -733655109
585175081 -733646925
585834175 -733622973
586633297 -733577085
587460043 -733521285
588822205 -733427661
590453503 -733304973
597306625 -732777171
598333501 -732693489
599098081 -732627291
600848677 -732431...

output:

1
1
0
0
0
0
0
1
2
1
1
1
0
1
0
2
1
2
1
2
0
2
2
2
1
1
0
1
0
0
1
2
2
1
1
1
1
2
2
1
1
0
1
1
0
1
1
1
1
2
0
0
2
1
1
1
1
1
2
1
1
2
0
2
1
1
1
0
1
1
2
1
1
0
1
1
1
2
2
1
2
1
1
1
2
1
1
2
1
0
1
0
1
1
2
1
1
0
1
1
1
1
1
0
1
1
0
1
1
2
1
0
1
1
2
1
2
0
0
1
1
0
1
1
0
2
1
1
1
1
1
1
0
0
1
2
1
2
1
0
1
0
2
1
0
2
1
1
1
0
...

result:

ok 1000 numbers

Test #9:

score: 0
Accepted
time: 17ms
memory: 3532kb

input:

1000 1000
383687106 -662965444
404629848 -661971364
456196932 -656303110
481565838 -653442130
491580000 -652286890
513183840 -649621300
524886738 -648156736
541734714 -643846294
553325220 -640595362
571836426 -634565194
585246582 -627706948
591259860 -623361106
597943836 -617700448
605975550 -610284...

output:

0
1
0
0
0
1
1
2
1
0
1
0
1
2
1
0
0
1
1
1
1
1
1
0
1
0
0
1
2
1
1
1
1
2
1
2
1
1
1
1
1
0
1
1
2
0
1
1
0
2
1
0
1
0
1
2
1
2
1
1
0
0
1
1
0
2
0
0
1
2
1
1
1
2
2
0
1
2
2
1
0
0
1
1
1
2
1
1
2
0
0
2
0
1
0
0
2
0
1
1
0
1
1
2
1
1
1
1
2
1
0
1
0
0
2
1
0
1
0
1
0
1
2
1
0
0
0
0
0
0
2
0
1
1
1
0
2
2
0
0
0
1
0
0
1
2
1
1
0
1
...

result:

ok 1000 numbers

Test #10:

score: 0
Accepted
time: 17ms
memory: 3528kb

input:

1000 1000
-89995087 -831851181
-87346021 -831828921
-84891511 -831744171
-79568203 -831225225
-76494727 -830921307
-73235665 -830589153
-66234565 -829871907
-61345657 -829265043
-56094727 -828518091
-47397535 -827143263
-45247975 -826735329
-38182327 -825371001
-32179177 -823926267
-27420181 -822702...

output:

2
1
2
0
2
0
1
0
2
1
1
1
1
2
2
1
2
2
1
2
2
1
2
1
1
1
2
1
1
1
1
2
1
0
1
1
2
0
1
1
2
0
1
2
0
1
1
0
0
1
1
1
1
1
1
0
0
1
2
0
1
0
0
2
1
0
1
1
2
1
0
0
1
2
2
1
0
1
0
1
1
2
1
0
0
1
2
1
0
1
1
0
1
1
0
2
1
2
0
1
1
0
1
0
0
1
0
1
0
0
1
1
1
1
2
1
2
1
0
1
0
0
1
1
1
2
0
1
1
2
1
2
0
0
1
1
1
1
1
1
1
0
0
1
1
0
2
1
0
0
...

result:

ok 1000 numbers

Test #11:

score: 0
Accepted
time: 14ms
memory: 3624kb

input:

1000 1000
-521920755 -589450110
-520843161 -589430664
-517059531 -589333902
-516294063 -589313100
-515588943 -589289712
-514711401 -589245060
-514212489 -589217784
-513590589 -589180032
-513090177 -589143018
-512462637 -589093266
-510832209 -588943758
-510717465 -588932748
-510366333 -588897438
-508...

output:

1
0
0
0
1
1
1
1
0
2
1
2
0
1
1
2
1
1
0
0
0
1
1
1
0
1
0
0
1
1
1
1
2
1
2
1
0
1
2
1
1
1
0
1
1
2
1
0
2
1
2
1
1
1
0
2
1
2
1
0
0
1
1
1
0
2
1
0
0
0
0
2
1
1
0
2
0
2
2
0
1
1
1
1
2
0
2
1
2
2
1
1
1
2
2
0
0
0
1
1
1
0
1
2
1
1
1
2
1
2
1
2
1
1
2
0
0
2
2
1
0
2
0
1
1
1
1
0
1
0
2
1
1
2
2
0
2
2
0
1
0
1
0
1
0
2
1
0
0
1
...

result:

ok 1000 numbers

Test #12:

score: 0
Accepted
time: 21ms
memory: 3592kb

input:

1000 1000
135678973 -512731173
138245143 -512730873
139620511 -512727279
140549359 -512723109
141179551 -512719341
143033407 -512699013
144022339 -512685993
144735325 -512673687
145503247 -512659455
147606127 -512618625
148360033 -512597373
149010193 -512578485
149738023 -512546715
149970055 -512536...

output:

0
1
0
0
1
1
0
2
0
2
1
1
0
1
1
0
0
1
0
0
1
1
1
0
0
1
0
2
1
0
1
0
2
1
2
0
0
1
1
2
1
0
1
0
1
1
2
1
1
2
1
2
2
1
0
1
2
0
0
1
0
1
1
0
1
2
0
1
1
0
1
0
1
1
0
2
0
0
0
2
0
2
2
0
1
1
2
0
0
1
1
2
2
1
1
0
1
0
0
1
0
1
0
0
0
1
1
2
1
1
0
2
0
0
1
0
1
0
1
0
1
1
1
1
2
1
1
0
0
2
2
0
0
0
2
1
1
1
1
1
0
1
2
1
0
1
1
1
2
0
...

result:

ok 1000 numbers

Test #13:

score: 0
Accepted
time: 21ms
memory: 3636kb

input:

1000 1000
351347924 -65748475
372897926 -65360617
383223914 -65023771
395934266 -64493569
518888294 -52852315
534293948 -49392937
547110512 -45728953
559110452 -41992699
564454634 -40209025
568267940 -37798795
570194018 -36499723
575066318 -32769325
577860548 -30401929
589115126 -18589639
592627520 ...

output:

2
1
0
1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
0
2
2
2
1
1
1
0
1
1
0
1
1
2
2
0
1
0
2
2
1
1
1
2
0
0
1
0
2
1
1
0
2
1
0
2
0
1
1
1
2
0
1
2
1
1
0
1
0
1
1
0
1
0
2
1
0
2
1
1
0
2
1
1
0
0
1
1
2
1
0
1
1
0
1
2
1
2
0
1
1
1
1
1
0
1
2
0
1
1
2
0
2
1
1
1
2
0
0
1
1
2
1
1
2
1
2
1
0
1
0
1
1
1
1
2
1
0
1
0
1
0
1
1
2
1
1
2
0
1
2
1
...

result:

ok 1000 numbers

Test #14:

score: 0
Accepted
time: 67ms
memory: 4140kb

input:

3920 1000
0 -1179960
60 -1179960
2460 -1179900
4800 -1179840
7080 -1179780
9300 -1179720
11460 -1179660
13560 -1179600
15600 -1179540
17580 -1179480
19500 -1179420
21360 -1179360
23160 -1179300
24900 -1179240
26580 -1179180
28200 -1179120
29760 -1179060
31260 -1179000
32700 -1178940
34080 -1178880
3...

output:

2
1960
1
2
1
0
0
0
1
0
1
1
1960
2
0
0
1
0
0
0
1
0
2
0
0
1
2
2
0
1
0
2
1
1
1
0
0
0
1
1
1
1960
1
0
0
0
0
1960
0
0
0
1
2
0
0
1
2
1
0
1
0
1
1
2
2
1960
0
0
2
2
2
1
0
2
2
2
1
1960
0
0
0
2
0
2
1
1
0
0
0
1960
2
0
2
2
1
2
1
2
1
1
0
1
1
2
0
0
2
0
0
1
0
2
1
2
2
1
1
1960
1
1
0
1
0
2
1
1960
1
1
2
1
2
2
1
0
1
1
0...

result:

ok 1000 numbers

Test #15:

score: 0
Accepted
time: 69ms
memory: 3852kb

input:

3920 1000
0 -1179960
60 -1179960
2460 -1179900
4800 -1179840
7080 -1179780
9300 -1179720
11460 -1179660
13560 -1179600
15600 -1179540
17580 -1179480
19500 -1179420
21360 -1179360
23160 -1179300
24900 -1179240
26580 -1179180
28200 -1179120
29760 -1179060
31260 -1179000
32700 -1178940
34080 -1178880
3...

output:

1
1
1
0
1
1
0
0
0
2
0
1
1
2
2
1
1
1
1
1
1
1
2
1960
1
2
0
2
2
2
1
1
0
1960
2
1
0
0
1
0
2
0
0
1960
1
1
2
1
0
1960
0
1
0
2
0
1
2
0
0
2
2
0
2
1960
1
2
2
1
0
2
0
0
2
2
2
0
0
1
1960
2
1
0
1
1
1
0
1960
2
0
1
0
0
0
0
1
2
1
0
0
1
0
1
1
0
0
2
1
2
1
1
2
2
2
0
1
1
0
2
2
0
1
1960
0
1
0
0
1
1
0
1
0
2
1
2
1
0
1
2
...

result:

ok 1000 numbers

Test #16:

score: 0
Accepted
time: 69ms
memory: 3916kb

input:

3920 1000
0 -1179960
60 -1179960
2460 -1179900
4800 -1179840
7080 -1179780
9300 -1179720
11460 -1179660
13560 -1179600
15600 -1179540
17580 -1179480
19500 -1179420
21360 -1179360
23160 -1179300
24900 -1179240
26580 -1179180
28200 -1179120
29760 -1179060
31260 -1179000
32700 -1178940
34080 -1178880
3...

output:

1
2
0
2
1
1960
2
1
0
1
1
1
2
2
2
1
1
0
2
1
1
2
2
1
1
0
0
1
2
0
2
1960
1
2
1960
1
2
1
0
0
1960
1
1
1960
1
0
1960
1
0
1960
1
1
0
0
0
0
1
2
0
2
0
0
1
1960
1
1
1
1
0
2
0
1
0
0
0
1
2
0
0
0
0
1
1
2
1
0
0
1
0
2
1
0
1
0
0
1
2
1
0
0
0
1
2
1960
2
2
2
1
1
0
2
0
1960
2
1
2
1960
1
0
0
1960
1
2
1
2
0
1
1
0
1
0
0
...

result:

ok 1000 numbers

Test #17:

score: 0
Accepted
time: 69ms
memory: 4052kb

input:

3920 1000
0 -1179960
60 -1179960
2460 -1179900
4800 -1179840
7080 -1179780
9300 -1179720
11460 -1179660
13560 -1179600
15600 -1179540
17580 -1179480
19500 -1179420
21360 -1179360
23160 -1179300
24900 -1179240
26580 -1179180
28200 -1179120
29760 -1179060
31260 -1179000
32700 -1178940
34080 -1178880
3...

output:

0
1
1
2
2
1
1
2
0
1
0
0
0
2
1
0
1
1
4
1
0
2
2
1
0
2
0
0
0
2
2
1
0
1
1
1
2
2
0
1
2
1
1
2
1
2
1
2
2
0
0
2
1
1
2
1
1
2
0
1
1
1
0
1
1
2
0
0
1
1
0
1
1
2
1960
1
2
2
1
0
1
0
2
2
1960
2
1
2
0
1
2
0
1
1
0
2
2
1960
0
1
2
1
1
1
1
0
1
2
1
0
0
0
2
2
1
2
2
2
1
0
0
2
1
0
1
1960
2
1
0
1
1
0
0
1
0
0
1
1
1
0
2
2
2
2
...

result:

ok 1000 numbers

Test #18:

score: 0
Accepted
time: 72ms
memory: 3952kb

input:

3920 1000
0 -1179960
60 -1179960
2460 -1179900
4800 -1179840
7080 -1179780
9300 -1179720
11460 -1179660
13560 -1179600
15600 -1179540
17580 -1179480
19500 -1179420
21360 -1179360
23160 -1179300
24900 -1179240
26580 -1179180
28200 -1179120
29760 -1179060
31260 -1179000
32700 -1178940
34080 -1178880
3...

output:

1
0
0
1
1
2
0
0
1
1960
0
0
1
1
2
2
1
1
0
0
1
1
1
1
0
2
2
1
0
2
1960
0
0
1960
2
1
0
2
1
0
1
2
0
2
2
0
2
0
2
1960
0
1
0
0
0
2
0
1
1
1
1
2
1
0
2
1
0
1
1
1
1
1
1960
1
2
1
2
1
1
1960
1
1
0
1
1
1
0
2
0
0
2
1
1
1960
0
1960
0
1960
1
1
1
0
2
0
0
2
0
2
1
1
0
0
1
0
0
0
1
2
0
1
0
2
2
0
2
2
0
1960
1
1
1
0
0
0
0
...

result:

ok 1000 numbers

Test #19:

score: -100
Time Limit Exceeded

input:

100000 100000
-418102239 223818986
-418082643 223818992
-418037097 223819010
-418023831 223819016
-418013145 223819022
-418002855 223819028
-417913239 223819082
-417895167 223819094
-417868593 223819112
-417852999 223819124
-417829815 223819142
-417815205 223819154
-417786147 223819184
-417768957 22...

output:


result: