QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#459840#8834. Formal Fringhos_lyricAC ✓71ms11168kbC++145.9kb2024-06-30 14:33:432024-06-30 14:33:44

Judging History

你现在查看的是最新测评结果

  • [2024-06-30 14:33:44]
  • 评测
  • 测评结果:AC
  • 用时:71ms
  • 内存:11168kb
  • [2024-06-30 14:33:43]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")

////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////

constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;


/*
  e := bsr(n)
  consider 2^f, 2^f, 2^f -> 2^(f+1), 2^f
  a[f] := (# of 2^f after reducing)
  b[f] := (# of 2^f after reducing)
  
  - b[e] = 0:
    -- b[e-1] = 0: impossible
    -- b[e-1] = 1: NO (n = 2^(e-1) + others)
    -- b[e-1] = 2: NO (n = (2^(e-1) + small) + (2^(e-1) + small))
  - b[e] = 1: YES
  - b[e] = 2: impossible
  
  YES <=> b[e] = 1
  
  - a[e] >= 2: impossible
  - a[e] = 1: OK
  - a[e] = 0:
    need (>= 3) 2^(e-1)'s after reducing to 2^(e-1) from below
    need n[e-1] = 1
    -- a[e-1] >= 4: impossible
    -- a[e-1] = 3: OK
    -- a[e-1] <= 2:
      need (>= 7 - 2 a[e-1]) 2^(e-2)'s after reducing to 2^(e-2) from below
        <=> need (>= 7) 2^(e-2)'s after reducing to 2^(e-2) from below and above
      need n[e-2] = 2
        ...
  
  YES <=> \exist f s.t. floor(n/2^f) = (sum of 2^(>=f)) = 2^(e-f+1) - 1
*/

int main() {
  int N;
  for (; ~scanf("%d", &N); ) {
    const int K = (31 - __builtin_clz(N)) + 1;
    
    vector<Mint> all(1<<K, 0);
    all[0] = 1;
    for (int n = 1; n < 1<<K; ++n) {
      all[n] = all[n - 1] + ((n & 1) ? 0 : all[n >> 1]);
    }
// cerr<<"all = "<<all<<endl;
    
    // dp[k]: partition (2^k - 1) into 2^*, no upper cut
    vector<Mint> dp(K + 1, 0);
    for (int k = 1; k <= K; ++k) {
      dp[k] = all[(1<<k) - 1];
      for (int l = 1; l < k; ++l) {
        dp[k] -= dp[l] * all[(1<<(k-l)) - 1];
      }
    }
// cerr<<"dp = "<<dp<<endl;
    
    vector<Mint> ans(N + 1);
    for (int n = 1; n <= N; ++n) {
      const int e = 31 - __builtin_clz(n);
      for (int f = e; f >= 0 && (n>>f) == (1<<(e-f+1)) - 1; --f) {
        ans[n] += dp[e - f + 1] * all[n & ((1<<f) - 1)];
      }
    }
    
    for (int n = 1; n <= N; ++n) {
      if (n > 1) printf(" ");
      printf("%u", ans[n].x);
    }
    puts("");
  }
  return 0;
}
// 1 1 2 1 1 3 6 1 1 2 2 5 5 11 26 1 1 2 2 4 4 6 6 11 11 16 16 27 27 53 166 1 1 2 2 4 4 6 6 10 10 14 14 20 20 26 26 37 37 48 48 64 64 80 80 107 107 134 134 187 187 353 1626 1 1 2 2 4 4 6 6 10 10 14 14 20 20 26 26 36 36 46 46 60 60 74 74 94 94 114 114 140 140 166 166 203 203 240 240 288

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3820kb

input:

10

output:

1 1 2 1 1 3 6 1 1 2

result:

ok 10 numbers

Test #2:

score: 0
Accepted
time: 0ms
memory: 3896kb

input:

70

output:

1 1 2 1 1 3 6 1 1 2 2 5 5 11 26 1 1 2 2 4 4 6 6 11 11 16 16 27 27 53 166 1 1 2 2 4 4 6 6 10 10 14 14 20 20 26 26 37 37 48 48 64 64 80 80 107 107 134 134 187 187 353 1626 1 1 2 2 4 4 6

result:

ok 70 numbers

Test #3:

score: 0
Accepted
time: 71ms
memory: 11168kb

input:

1000000

output:

1 1 2 1 1 3 6 1 1 2 2 5 5 11 26 1 1 2 2 4 4 6 6 11 11 16 16 27 27 53 166 1 1 2 2 4 4 6 6 10 10 14 14 20 20 26 26 37 37 48 48 64 64 80 80 107 107 134 134 187 187 353 1626 1 1 2 2 4 4 6 6 10 10 14 14 20 20 26 26 36 36 46 46 60 60 74 74 94 94 114 114 140 140 166 166 203 203 240 240 288 288 336 336 400 ...

result:

ok 1000000 numbers

Extra Test:

score: 0
Extra Test Passed