QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#456937#8339. Rooted Treecastc#AC ✓1284ms160116kbC++207.6kb2024-06-28 18:08:572024-06-28 18:08:57

Judging History

你现在查看的是最新测评结果

  • [2024-06-28 18:08:57]
  • 评测
  • 测评结果:AC
  • 用时:1284ms
  • 内存:160116kb
  • [2024-06-28 18:08:57]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
#define int long long
const int mod = 1e9 + 9;
using i64 = long long;
template<class T>
constexpr T power(T a, i64 b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
}

constexpr i64 mul(i64 a, i64 b, i64 p) {
    i64 res = a * b - i64(1.L * a * b / p) * p;
    res %= p;
    if (res < 0) {
        res += p;
    }
    return res;
}
template<i64 P>
struct MLong {
    i64 x;
    constexpr MLong() : x{} {}
    constexpr MLong(i64 x) : x{norm(x % getMod())} {}
    
    static i64 Mod;
    constexpr static i64 getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(i64 Mod_) {
        Mod = Mod_;
    }
    constexpr i64 norm(i64 x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr i64 val() const {
        return x;
    }
    explicit constexpr operator i64() const {
        return x;
    }
    constexpr MLong operator-() const {
        MLong res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MLong inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    constexpr MLong &operator*=(MLong rhs) & {
        x = mul(x, rhs.x, getMod());
        return *this;
    }
    constexpr MLong &operator+=(MLong rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MLong &operator-=(MLong rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MLong &operator/=(MLong rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MLong operator*(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MLong operator+(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MLong operator-(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MLong operator/(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MLong &a) {
        i64 v;
        is >> v;
        a = MLong(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MLong &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MLong lhs, MLong rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MLong lhs, MLong rhs) {
        return lhs.val() != rhs.val();
    }
};

template<>
i64 MLong<0LL>::Mod = i64(1E18) + 9;

template<int P>
struct MInt {
    int x;
    constexpr MInt() : x{} {}
    constexpr MInt(i64 x) : x{norm(x % getMod())} {}
    
    static int Mod;
    constexpr static int getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(int Mod_) {
        Mod = Mod_;
    }
    constexpr int norm(int x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr int val() const {
        return x;
    }
    explicit constexpr operator int() const {
        return x;
    }
    constexpr MInt operator-() const {
        MInt res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MInt inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    constexpr MInt &operator*=(MInt rhs) & {
        x = 1LL * x * rhs.x % getMod();
        return *this;
    }
    constexpr MInt &operator+=(MInt rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MInt &operator-=(MInt rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MInt &operator/=(MInt rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MInt operator*(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MInt operator+(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MInt operator-(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MInt operator/(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
        i64 v;
        is >> v;
        a = MInt(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MInt lhs, MInt rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MInt lhs, MInt rhs) {
        return lhs.val() != rhs.val();
    }
};

template<>
int MInt<0>::Mod = 1e9 + 9;

template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();

constexpr int P = 1e9 + 9;
using Z = MInt<P>;

struct Comb {
    int n;
    std::vector<Z> _fac;
    std::vector<Z> _invfac;
    std::vector<Z> _inv;
    
    Comb() : n{0}, _fac{1}, _invfac{1}, _inv{0} {}
    Comb(int n) : Comb() {
        init(n);
    }
    
    void init(int m) {
        m = std::min(m, Z::getMod() - 1);
        if (m <= n) return;
        _fac.resize(m + 1);
        _invfac.resize(m + 1);
        _inv.resize(m + 1);
        
        for (int i = n + 1; i <= m; i++) {
            _fac[i] = _fac[i - 1] * i;
        }
        _invfac[m] = _fac[m].inv();
        for (int i = m; i > n; i--) {
            _invfac[i - 1] = _invfac[i] * i;
            _inv[i] = _invfac[i] * _fac[i - 1];
        }
        n = m;
    }
    
    Z fac(int m) {
        if (m > n) init(2 * m);
        return _fac[m];
    }
    Z invfac(int m) {
        if (m > n) init(2 * m);
        return _invfac[m];
    }
    Z inv(int m) {
        if (m > n) init(2 * m);
        return _inv[m];
    }
    Z binom(int n, int m) {
        if (n < m || m < 0) return 0;
        return fac(n) * invfac(m) * invfac(n - m);
    }
} comb;
ll qpow(ll a, ll n, ll p = mod) {
    ll ans = 1;
    while(n) {
        if(n & 1) {
            ans = ans % p * a % p;
        }
        a = a % p * a % p;
        n >>= 1;
    }
    return ans;
}

ll inv(ll a, ll p = mod) {
    return qpow(a, p - 2, p);
}
const int N = 2e7 + 9;
int invv[N];

void solve() {
    int M, N;
    cin >> M >> N;
    Z D = 0, K = 1, sum = 0, G = 0;
    for(int i = 0; i < N; i++) {
        Z ND = D, NK = K, Nsum = sum, NG = G;
        Z tmp = K.inv();
        ND += ((M - 1) * (D + K) + K) * tmp;
        NK += M - Z(1);
        Nsum += ((M - 1) * (D + K) + K) * tmp;
        NG += M * (D + K) * tmp;
        D = ND, K = NK, sum = Nsum, G = NG;
    }
    cout << G << "\n";
}        
    
signed main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);

    invv[1] = 1;
    int pp = mod;
    for(int i = 2; i < N; i++) {
        invv[i] = 1LL * (pp - pp / i) * invv[pp % i] % pp;
    }
    int T = 1;
    // cin >> T;
    while(T--) solve();

    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 136ms
memory: 159804kb

input:

6 2

output:

18

result:

ok 1 number(s): "18"

Test #2:

score: 0
Accepted
time: 146ms
memory: 159868kb

input:

2 6

output:

600000038

result:

ok 1 number(s): "600000038"

Test #3:

score: 0
Accepted
time: 221ms
memory: 159868kb

input:

83 613210

output:

424200026

result:

ok 1 number(s): "424200026"

Test #4:

score: 0
Accepted
time: 929ms
memory: 160116kb

input:

48 6713156

output:

198541581

result:

ok 1 number(s): "198541581"

Test #5:

score: 0
Accepted
time: 150ms
memory: 160040kb

input:

1 111

output:

6216

result:

ok 1 number(s): "6216"

Test #6:

score: 0
Accepted
time: 987ms
memory: 160112kb

input:

28 7304152

output:

457266679

result:

ok 1 number(s): "457266679"

Test #7:

score: 0
Accepted
time: 610ms
memory: 159804kb

input:

38 4101162

output:

232117382

result:

ok 1 number(s): "232117382"

Test #8:

score: 0
Accepted
time: 1265ms
memory: 159864kb

input:

51 9921154

output:

340670552

result:

ok 1 number(s): "340670552"

Test #9:

score: 0
Accepted
time: 358ms
memory: 159752kb

input:

79 1801157

output:

620550406

result:

ok 1 number(s): "620550406"

Test #10:

score: 0
Accepted
time: 766ms
memory: 160100kb

input:

22 5417157

output:

457449071

result:

ok 1 number(s): "457449071"

Test #11:

score: 0
Accepted
time: 515ms
memory: 159804kb

input:

25 3210162

output:

36368303

result:

ok 1 number(s): "36368303"

Test #12:

score: 0
Accepted
time: 492ms
memory: 159872kb

input:

67 2919160

output:

935195555

result:

ok 1 number(s): "935195555"

Test #13:

score: 0
Accepted
time: 1121ms
memory: 160096kb

input:

77 8613163

output:

482832472

result:

ok 1 number(s): "482832472"

Test #14:

score: 0
Accepted
time: 1284ms
memory: 159752kb

input:

90 10000000

output:

275581651

result:

ok 1 number(s): "275581651"

Test #15:

score: 0
Accepted
time: 1275ms
memory: 159808kb

input:

99 9999999

output:

126087169

result:

ok 1 number(s): "126087169"

Test #16:

score: 0
Accepted
time: 1277ms
memory: 159904kb

input:

100 10000000

output:

451590067

result:

ok 1 number(s): "451590067"

Extra Test:

score: 0
Extra Test Passed