QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#451800#8779. Square of Trianglesideograph_advantageWA 309ms43788kbC++2023.4kb2024-06-23 17:34:502024-06-23 17:34:50

Judging History

你现在查看的是最新测评结果

  • [2024-06-23 17:34:50]
  • 评测
  • 测评结果:WA
  • 用时:309ms
  • 内存:43788kb
  • [2024-06-23 17:34:50]
  • 提交

answer

#include <algorithm>
#include <bits/stdc++.h>

using namespace std;

#ifdef zisk
void __print(int x) {cerr << x;}
void __print(long x) {cerr << x;}
void __print(long long x) {cerr << x;}
void __print(unsigned x) {cerr << x;}
void __print(unsigned long x) {cerr << x;}
void __print(unsigned long long x) {cerr << x;}
void __print(float x) {cerr << x;}
void __print(double x) {cerr << x;}
void __print(long double x) {cerr << x;}
void __print(char x) {cerr << '\'' << x << '\'';}
void __print(const char *x) {cerr << '\"' << x << '\"';}
void __print(const string &x) {cerr << '\"' << x << '\"';}
void __print(bool x) {cerr << (x ? "true" : "false");}

template<typename T, typename V>
void __print(const pair<T, V> &x) {cerr << '{'; __print(x.first); cerr << ','; __print(x.second); cerr << '}';}
template<typename T>
void __print(const T &x) {int f = 0; cerr << '{'; for (auto &i: x) cerr << (f++ ? "," : ""), __print(i); cerr << "}";}
void _print() {cerr << "]\n";}
template <typename T, typename... V>
void _print(T t, V... v) {__print(t); if (sizeof...(v)) cerr << ", "; _print(v...);}
#define debug(x...) cerr << "[" << #x << "] = [", _print(x)
template<class T> void pary(T l, T r) {
	while (l != r) cout << *l << " ", l++;
	cout << endl;
}
#else
#define debug(x...) (void)0
template<class T> void pary(T l, T r) {}
#endif

#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")

mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
#define vi vector<int>
#define pb push_back
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define pii pair<int,int>
#define pll pair<ll,ll>
#define F(n) Fi(i,n)
#define Fi(i,n) Fl(i,0,n)
#define Fl(i,l,n) for(int i=l;i<n;i++)
#define RF(n) RFi(i,n)
#define RFi(i,n) RFl(i,0,n)
#define RFl(i,l,n) for(int i=n-1;i>=l;i--)
#define all(v) begin(v),end(v)
#define siz(v) ((long long)(v.size()))
#define get_pos(v,x) (lower_bound(all(v),x)-begin(v))
#define sort_uni(v) sort(begin(v),end(v)),v.erase(unique(begin(v),end(v)),end(v))
#define mem(v,x) memset(v,x,sizeof v)
#define ff first
#define ss second
#define RAN(a,b) uniform_int_distribution<int> (a, b)(rng) // inclusive
#define cmax(a,b) (a = max(a,b))
#define cmin(a,b) (a = min(a,b))
typedef long long ll;
typedef long double ld;

/* TEMPLATE STARTS HERE */


namespace factorization{ // {{{ primality test and factorization

class RNG {  // RANDOM NUMBER GENERATOR
private:
    mt19937_64 mt;

public:
    RNG() : mt(chrono::steady_clock::now().time_since_epoch().count()) {}

    int64_t operator()(int64_t L, int64_t R) {
        uniform_int_distribution<int64_t> dist(L, R - 1);
        return dist(mt);
    }

    int64_t operator()(int64_t r) { return (*this)(0, r); }
} Rng;

class Mint  // MODULAR INTEGERS IN MONTGOMERY FORM
    {
    private:
        using u64 = uint64_t;
        using u128 = __uint128_t;

        // CLASS MEMBER DATA
        static u64 mod;
        static u64 N;  //  mod * N ≡ -1 MOD 2^64
        static u64 R;  //  2^128 MOD mod
        u64 a;

    public:
        Mint() = default;
        Mint(int64_t b) : a(reduce(u128(b) * R)){};

        // GETS AND SETS
        static u64 get_mod() { return mod; }
        u64 get() const {
            u64 ret = reduce(a);
            return ret >= mod ? ret - mod : ret;
        }
        static void set_mod(u64 m) {
            N = mod = m;
            for (int i = 0; i < 5; ++i) N *= 2 - m * N;
            N = -N;
            R = -u128(m) % m;
        }

        // OPERATORS
        Mint &operator+=(const Mint &b) {
            if (int64_t(a += b.a - 2 * mod) < 0) a += 2 * mod;
            return *this;
        }
        Mint &operator-=(const Mint &b) {
            if (int64_t(a -= b.a) < 0) a += 2 * mod;
            return *this;
        }
        Mint &operator*=(const Mint &b) {
            a = reduce(u128(a) * b.a);
            return *this;
        }

        Mint operator+(const Mint &b) const { return Mint(*this) += b; }
        Mint operator-(const Mint &b) const { return Mint(*this) -= b; }
        Mint operator*(const Mint &b) const { return Mint(*this) *= b; }
        Mint operator-() const { return Mint() - Mint(*this); }
        Mint &operator++() { return *this += Mint(1); }
        Mint &operator--() { return *this -= Mint(1); }

        bool operator==(const Mint &b) const {
            return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
        }
        bool operator!=(const Mint &b) const {
            return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
        }

        // METHODS
        Mint pow(u64 n) const {
            Mint ret(1), mul(*this);
            while (n > 0) {
                if (n & 1) ret *= mul;
                mul *= mul;
                n >>= 1;
            }
            return ret;
        }

        friend ostream &operator<<(ostream &os, const Mint &b) {
            return os << b.get();
        }
        friend istream &operator>>(istream &is, Mint &b) {
            int64_t t;
            is >> t;
            b = Mint(t);
            return is;
        }

    private:
        static u64 reduce(const u128 &b) {
            return (b + u128(u64(b) * u64(N)) * mod) >> 64;
        }
    };

// NONCONSTANT STATIC CLASS MEMBERS MUST HAVE GLOBAL SCOPE
typename Mint::u64 Mint::mod, Mint::N, Mint::R;

// ===================  BEGIN MILLER RABIN  ===================
static inline bool isPrime(const uint64_t n) {
    static constexpr uint64_t primeMask = 2891462833508853932ULL;
    if (n < 64) {
        return primeMask >> n & 1;
    }  // BITMASK SMALL PRIMES
    if (!(n & 1)) return false;

    Mint::set_mod(n);

    uint64_t u = n - 1;
    int s, t = 0;
    while (!(u & 1)) ++t, u >>= 1;

    // FROM  http://miller-rabin.appspot.com/    SEE REMARKS
    vector<uint64_t> seeds;
    if (n < 1050535501ULL)
        seeds = {336781006125ULL, 9639812373923155ULL};
    else if (n < 350269456337ULL)
        seeds = {4230279247111683200ULL, 14694767155120705706ULL,
            16641139526367750375ULL};
    else if (n < 55245642489451ULL)
        seeds = {2ULL, 141889084524735ULL, 1199124725622454117ULL,
            11096072698276303650ULL};
    else if (n < 7999252175582851ULL)
        seeds = {2ULL, 4130806001517ULL, 149795463772692060ULL,
            186635894390467037ULL, 3967304179347715805ULL};
    else if (n < 585226005592931977ULL)
        seeds = {2ULL,
            123635709730000ULL,
            9233062284813009ULL,
            43835965440333360ULL,
            761179012939631437ULL,
            1263739024124850375ULL};
    else
        seeds = {2ULL,      325ULL,     9375ULL,      28178ULL,
            450775ULL, 9780504ULL, 1795265022ULL};

    for (auto &a : seeds) {
        uint64_t p = a < n ? a : a % n;
        if (p == 0) continue;

        Mint x = Mint(p).pow(u);

        if (x != 1) {
            for (s = 0; s < t && x != n - 1; ++s)
                if ((x *= x) == 1) return false;
            if (t == s) return false;
        }
    }
    return true;
}
// ====================  END MILLER RABIN  ====================

using u32 = uint32_t;
using u64 = uint64_t;

// ===================  BEGIN POLLARD'S RHO  ===================
u64 pollardRho(u64 n) {
    if (!(n & 1)) return 2;
    if (isPrime(n)) return n;

    if (Mint::get_mod() != n) Mint::set_mod(n);

    Mint R, one = 1;
    auto f = [&](Mint x) { return x * x + R; };
    auto rnd = [&]() { return Rng(n - 2) + 2; };
    constexpr size_t m = 128;

    while (true) {
        Mint x, ys, q = one, y = rnd();
        R = rnd();
        u64 g = 1;

        for (u64 r = 1; g == 1; r <<= 1ULL) {
            x = y;
            for (size_t i = 0; i < r; ++i) y = f(y);
            for (size_t k = 0; g == 1 && k < r; k += m) {
                ys = y;
                for (size_t i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y));
                g = gcd(q.get(), n);
            }
        }

        if (g == n) do {
            g = gcd((x - (ys = f(ys))).get(), n);
        } while (g == 1);

        if (g != n) return g;
    }
    return 0;
}
// ====================  END POLLARD'S RHO  ====================

vector<u64> findFactors(u64 n) {
    if (n <= 1) return {};

    u64 p = pollardRho(n);
    if (p == n) return {n};

    auto l = findFactors(p);
    auto r = findFactors(n / p);

    copy(begin(r), end(r), back_inserter(l));
    return l;
}

vector<pair<u64, u32> > primeFactorization(u64 n) {
    auto pf = findFactors(n);
    sort(begin(pf), end(pf));

    vector<pair<u64, u32> > ret;
    for (auto &e : pf) {
        if (!empty(ret) && ret.back().first == e)
            ++ret.back().second;
        else
            ret.emplace_back(e, 1);
    }
    return ret;
}

} // namespace factorization }}}

using factorization::isPrime, factorization::primeFactorization;


/* TEMPLATE ENDS HERE */

const int maxC = 1e7 + 10;
vector<bool> isprime(maxC, 1);
vector<int> PrimeFactor(maxC);

pll reduce(ll t){
    if(t == 0) return {0, 1};
    map<int, int > fac;
    if(t >= maxC){
        auto bruh = primeFactorization(t);
        for(auto [x, y] : bruh){
            fac[x] = y;
        }
    }else{
        while(t > 1){
            fac[PrimeFactor[t]]++;
            t /= PrimeFactor[t];
        }
    }
    pll ret = mp(1, 1);
    for(auto [x, y] : fac){
        if(y & 1) ret.ss *= x, y--;
        while(y){
            ret.ff *= x;
            y -= 2;
        } 
    }
    return ret;
}

using tri = array<pll, 3>;
ll square(pll x){
    return x.ff * x.ff * x.ss;
}

pll calc_cosine(tri x) { // return cosine * abs(cosine) as a fraction
    ll n = square(x[1]) + square(x[2]) - square(x[0]);
    n *= abs(n);

    ll d = 4 * square(x[1]) * square(x[2]);

    ll g = gcd(n, d);
    n /= g, d /= g;

    return {n, d};
}

ll calc_area (tri x) { // returns 16 A^2
    ll a[3];
    for(int i = 0; i < 3; i++) a[i] = square(x[i]);
    ll ret1 = a[0] * a[1] + a[1] * a[2] + a[2] * a[0];
    ll ret2 = 0;
    for(int i = 0; i < 3; i++) ret2 += a[i] * a[i];
    return 2 * ret1 - ret2;
};

vector<tri> tris(4);
vector<int> used(4);

struct iter{
    vector<tri> inp;
    vector<tri> ok;
    vector<int> ids;
    int idx;

    iter(vector<tri> _tris) : inp(_tris) {}
    iter(){}

    void init(vector<tri> _tris){
        inp = _tris;
    }

    void init_unused(){
        for(int i = 0; i < 4; i++){
            if(!used[i]) inp.push_back(tris[i]);
        }
    }
    
    int get_length(pll x){
        idx = 0;

        int _bruh = 0;
        for(auto i : inp){
            sort(all(i));
            do{
                if(i[0] == x) ok.push_back(i), ids.push_back(_bruh);
            }while(next_permutation(all(i)));
            _bruh++;
        }
        return siz(ok);
    }

    int get_cosine(pll x){
        idx = 0;
        int _bruh = 0;
        for(auto i : inp){
            sort(all(i));
            do{
                if(calc_cosine(i) == x) ok.push_back(i), ids.push_back(_bruh);
            }while(next_permutation(all(i)));
            _bruh++;
        }
        return siz(ok);
    }

    tri query(){
        if(idx) used[ids[idx - 1]] = 0;
        if(idx == siz(ok)) return {};
        else{
            used[ids[idx]] = 1;
            return ok[idx++];
        }
    }
};

bool ping (tri target, tri t1, tri t2){
    
    {
        auto at = reduce(calc_area(target));
        auto a1 = reduce(calc_area(t1));
        auto a2 = reduce(calc_area(t2));

        if(a1.ss != at.ss || a2.ss != at.ss) return 0;
        if(a1.ff + a2.ff != at.ff) return 0;
    }

    sort(all(target));
    sort(all(t1));
    sort(all(t2));
    do{
        do{
            if(t1[0] == t2[0]){
                auto s1 = t1, s2 = t2;
                swap(s1[1], s1[0]), swap(s2[1], s2[0]);
                auto c1 = calc_cosine(s1), c2 = calc_cosine(s2);
                if(c1.ss == c2.ss && c1.ff + c2.ff == 0 && t1[2].ss == t2[2].ss){
                    tri tst;
                    tst[0] = t1[1];
                    tst[1] = t2[1];
                    tst[2] = {t1[2].ff + t2[2].ff, t1[2].ss};
                    sort(all(tst));
                    if(tst == target) return 1;
                }
            }
        }while(next_permutation(all(t2)));
    }while(next_permutation(all(t1)));

    return 0;
}

bool ping2from3 (array<tri, 2> target, array<tri, 3> t){
    for(auto& i : target) sort(all(i)); 
    for(auto& i : t) sort(all(i)); 

    for(int _ = 0; _ < 2; _++){
        for(int i = 0; i < 3; i++){
            if(t[i] != target[0]) continue;
            vector<tri> tst;
            for(int j = 0; j < 3; j++){
                if(j != i) tst.push_back(t[j]);
            }
            if(ping(target[1], tst[0], tst[1])) return 1;
        } 
        swap(target[0], target[1]);
    }
    return 0;
}

pll law_of_cosine(pll a, pll b, pll cos){
    ll c = 4 * square(a) * square(b);
    if(c % cos.ss != 0) return {-1, -1};
    c = c / cos.ss * cos.ff;
    pll d = reduce(c);
     
    if(d.ss != 1) return {-1, -1};
    
    ll e = square(a) + square(b) - d.ff;
    return reduce(e);
}

int solve(){

    for(int i = 0; i < 4; i++){
        used[i] = 0;
        for(int j = 0; j < 3; j++){
            ll x;
            cin >> x;
            tris[i][j] = reduce(x);
        }
        sort(all(tris[i]));
    }
    
    pll side_length;
    ll area;
    {
        vector<pll> _area(4);
        for(int i = 0; i < 4; i++) _area[i] = reduce(calc_area(tris[i])); 
        for(int i = 1; i < 4; i++) if(_area[i].ss != _area[0].ss) return 0; else _area[0].ff += _area[i].ff;
        if(_area[0].ff % 4) return 0;
        if(_area[0].ss != 1) return 0;
        _area[0].ff /= 4;
        area = _area[0].ff;
        side_length = reduce(_area[0].ff);
    }

    iter base;
    base.init_unused();

    int _c = base.get_length(side_length);
    while(_c--){
        tri b = base.query(); // there is at least one complete side in the result
        debug(b);
        tri b1 = b, b2 = b;
        swap(b1[1], b1[0]);
        swap(b2[2], b2[0]);
        
        pll c1 = calc_cosine(b1), c2 = calc_cosine(b2);
        if(c1.ff < 0) continue; // obtuse base
        if(c2.ff < 0) continue; // obtuse base

        ll current_area = reduce(calc_area(b)).ff;
        if(current_area > 2 * area) continue; // height too big
        else if (c2.ff == 0) {
            continue; // it will be symmetric
        } else if (c1.ff == 0) {
            if(current_area == 2 * area){
                // base triangle is cut sandwich
                debug("sandwich");
                array<tri, 3> parts;
                {
                    int idx = 0;
                    for(int i = 0; i < 4; i++) if(used[i]) continue; else parts[idx++] = tris[i];
                }

                // center cut to three vertex
                debug("cut from center");
                {
                    for(auto &i : parts) sort(all(i));
                    sort(all(parts));
                    do{
                        do{
                            do{
                                do{
                                    if(parts[0][0] == side_length && parts[1][0] == side_length && parts[2][0] == reduce(square(side_length) * 2)){
                                        if(parts[0][1] == parts[1][2] && parts[1][1] == parts[2][2] && parts[2][1] == parts[0][2]) return 1;
                                    } 
                                }while(next_permutation(all(parts[0])));
                            }while(next_permutation(all(parts[1])));
                        }while(next_permutation(all(parts[2])));
                    }while(next_permutation(all(parts)));
                }

                debug("cut one first");
                // cut one first
                {

                    vector<pll> st = {side_length, side_length, reduce(square(side_length) * 2)};
                    vector<pll> at = {{0LL, 1LL}, {1LL, 2LL}, {1LL, 2LL}};
                    vector<pll> lengths;
                    for(auto i : parts) for(auto j : i) lengths.pb(j);
                    sort_uni(lengths);


                    for(int _ = 0; _ < 3; _++){

                        for(auto l : lengths){
                            if(l.ss != st[0].ss) continue;
                            if(l.ff > st[0].ff) continue;
                            pll sl = {st[0].ff - l.ff, l.ss};
                            pll l2 = law_of_cosine(l, st[1], at[0]);
                            if(l2.ff == -1) continue;
                            array<tri, 2> target;
                            target[0] = {l, st[1], l2};
                            target[1] = {sl, st[2], l2};

                            if(ping2from3(target, parts)) return 1;
                        }

                        rotate(st.begin(), st.begin() + 1, st.end());
                        rotate(at.begin(), at.begin() + 1, at.end());
                    }
                }

            }else{
                // base triangle cuts through a corner
                debug("cut corner", b);
                if(side_length.ss != b[2].ss) continue;
                // four sides are side_length, side_length, b[0] , side_length - b[2], 
                pll sht = side_length;
                sht.ff -= b[2].ff;

                array<tri, 3> parts;
                {
                    int idx = 0;
                    for(int i = 0; i < 4; i++) if(used[i]) continue; else parts[idx++] = tris[i];
                }

                // try diagonal split
                debug("try diagonal split");
                {
                    pll diag = reduce(square(side_length) + square(side_length));
                    array<tri, 2> target;
                    target[0] = {side_length, side_length, diag};
                    target[1] = {diag, b[1], sht};

                    if(ping2from3(target, parts)) return 1;
                }
                {
                    pll diag = reduce(square(side_length) + square(sht));
                    array<tri, 2> target;
                    target[0] = {side_length, b[1], diag};
                    target[1] = {side_length, sht, diag};
                    debug(target);
                    
                    if(ping2from3(target, parts)) return 1;
                }

                // P on AB, and cut PC and PD (has to rotate four times)
                debug("iterate through edge cuts");

                vector<pll> sq = {side_length, side_length, b[1], sht};
                vector<pll> aq = {{0LL, 1LL}, {c2.ss - c2.ff, c2.ss}, {c2.ff - c2.ss, c2.ss}, {0LL, 1LL}}; // cos * abs(cos)

                vector<pll> lengths;
                for(auto i : parts) for(auto j : i) lengths.pb(j);
                sort_uni(lengths);
                sort(all(parts));

                for(int _ = 0; _ < 4; _++){
                    // cut on sq[0] 

                    
                    for(auto l : lengths){
                        if(l.ss != sq[0].ss) continue;
                        if(l.ff >= sq[0].ff) continue;

                        pll sl = {sq[0].ff - l.ff, l.ss};
                        pll l1 = law_of_cosine(l, sq[1], aq[0]); 
                        pll l2 = law_of_cosine(sl, sq[3], aq[3]); 

                        if(l1.ff == -1 || l2.ff == -1) continue;

                        array<tri, 3> cur_parts;
                        cur_parts[0] = {l1, l2, sq[2]}; 
                        cur_parts[1] = {l, sq[1], l1};
                        cur_parts[2] = {sl, sq[3], l2};
                        for(auto& i : cur_parts) sort(all(i));
                        sort(all(cur_parts));

                        if(parts == cur_parts) return 1;
                    }

                    rotate(sq.begin(), sq.begin() + 1, sq.end());
                    rotate(aq.begin(), aq.begin() + 1, aq.end());
                }
            }
        } 
        else if(current_area == 2 * area){
            // base triangle touch the top and cuts into two nonzero parts
            // this case should be redundant as one part only has one triangle
            // and that triangle can be used as base
            debug("top toucher");
            array<tri, 2> target;
            for(int i = 1; i < 3; i++){
                target[i-1] = {b[i], side_length, reduce(square(b[i])-square(side_length))};
            }
            array<tri, 3> parts;
            {
                int idx = 0;
                for(int i = 0; i < 4; i++) if(used[i]) continue; else parts[idx++] = tris[i];
            }

            if(ping2from3(target, parts)) return 1;

        } else{
            // top vertex is floating inside
            // one of the two angles at the base will be preserved we assume it's the right one (opposite to side 1)
            // because we will process the other one eventually

            debug("floating inside");
            array<tri, 3> parts;
            {
                int idx = 0;
                for(int i = 0; i < 4; i++) if(used[i]) continue; else parts[idx++] = tris[i];
            }
            if(c1.ff == 1 && c1.ss == 2) { // a 45 degree cut, this is the only case where a cut can transform the pentagon into two triangles
                pll long_diagonal = reduce(square(side_length) * 2);
                if(long_diagonal.ss == b[2].ss && long_diagonal.ff > b[2].ff){
                    array<tri, 2> target;
                    target[0] = {side_length, side_length, long_diagonal};
                    target[1] = {side_length, b[1], {long_diagonal.ff - b[2].ff, b[2].ss}};
                    if(ping2from3(target, parts)) return 1;
                }
            }
            debug("no 45 degree cut");

            // I think the cuts has to transform the shape from 5 -> 4 + 3 -> 3 + 3 + 3
            // and cutting sandwich has been covered
            // this leaves only the case where a center point is chosen and slices to all four vertices
            
            // at least that's what I think anyway

            {
                pll a1c = {c1.ss - c1.ff, c1.ss};
                pll a2c = {c2.ss - c2.ff, c2.ss};
                pll l1 = law_of_cosine(b[1], side_length, a2c);
                pll l2 = law_of_cosine(b[2], side_length, a1c);
                if(l1.ff == -1 || l2.ff == -1) continue;
                
                for(auto &i : parts) sort(all(i));
                sort(all(parts));

                array<tri, 3> tst;
                tst[0] = {side_length, b[1], l1};
                tst[1] = {side_length, b[2], l2};
                tst[2] = {side_length, l1, l2};

                for(auto &i : tst) sort(all(i));
                sort(all(tst));
                if(parts == tst) return 1;
            }
        }

    }



    return 0;
}

signed main(){


    for(int i = 2; i < maxC; i++){
        if(isprime[i]){
            PrimeFactor[i] = i;
            for(int j = 2; i * j < maxC; j++){
                isprime[i * j] = 0;
                PrimeFactor[i * j] = i;
            }
        }
    }

	cin.tie(0);
	ios_base::sync_with_stdio(false);

    ping({reduce(9), reduce(36), reduce(45)}, {reduce(36), reduce(5), reduce(17)}, {reduce(9), reduce(17), reduce(20)});
    int t;
    cin >> t;
    while(t--){
        cout << solve() << "\n";
    }

	return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 282ms
memory: 43788kb

input:

3
1 1 2
2 1 1
2 1 1
1 2 1
1 1 1
1 1 1
1 1 1
1 1 1
5 125 130
125 20 145
45 130 145
145 145 80

output:

1
0
1

result:

ok 3 lines

Test #2:

score: 0
Accepted
time: 228ms
memory: 43180kb

input:

20
1998001 7984010 9982009
1998001 7984010 1994005
7984010 9978013 9982009
9978013 1994005 7984010
9958045 7968034 9962037
7968034 1994005 9962037
9958045 1990013 7968034
1994005 1990013 7968034
7952074 9938097 1986025
7952074 9942085 1990013
7952074 9942085 9938097
1986025 7952074 1990013
7936130 9...

output:

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

result:

ok 20 lines

Test #3:

score: 0
Accepted
time: 309ms
memory: 43696kb

input:

20
1148639 3581051 1216206
9999916 7026968 270268
6013463 6013463 6756700
6013463 6013463 6756700
2608850 8630930 9445800
9862940 6448880 6939290
8631650 3682160 5184310
7504700 6652150 1917140
2359505 3170711 2299108
4027811 6760781 2960240
4679918 6106006 3178400
8153446 7975057 5222088
8849500 88...

output:

0
0
0
1
1
1
1
0
1
1
1
1
1
0
0
0
0
1
1
1

result:

ok 20 lines

Test #4:

score: 0
Accepted
time: 282ms
memory: 43668kb

input:

20
7300000 8100000 10000000
8100000 7300000 1000000
1000000 7300000 2900000
2900000 10000000 7300000
61728 8950560 9999936
7901184 4012320 4999968
8950560 3950592 4999968
4012320 123456 4999968
4494200 9932182 9932182
8381683 112355 9932182
5505395 9460291 9932182
9999595 4494200 9190639
5994936 671...

output:

1
1
0
0
0
1
0
0
0
0
0
1
1
0
0
0
0
1
0
0

result:

ok 20 lines

Test #5:

score: 0
Accepted
time: 236ms
memory: 43688kb

input:

20
10000000 5078125 3828125
78125 5000000 5078125
1250000 10000000 6250000
5000000 6250000 1250000
7079600 5663680 1415920
7079600 796455 9999935
5663680 9999935 5752175
5663680 88495 5752175
4410468 1135368 9999972
5676840 4541472 5676840
4541472 5676840 5676840
8078580 742356 6288192
8345560 44707...

output:

1
1
0
0
0
1
1
1
1
1
1
0
0
1
0
1
0
1
0
0

result:

ok 20 lines

Test #6:

score: 0
Accepted
time: 256ms
memory: 43688kb

input:

20
10000000 5078125 3828125
2031250 78125 1953125
703125 5078125 2031250
5000000 10000000 5000000
5000000 10000000 5000000
5000000 2890625 390625
6250000 1250000 10000000
1250000 2890625 3515625
6711400 9999986 3288586
4899322 4295296 604026
6979856 9999986 4899322
6711400 6979856 268456
9767552 645...

output:

1
1
1
0
1
1
0
1
1
0
1
1
0
0
1
0
0
1
0
0

result:

ok 20 lines

Test #7:

score: -100
Wrong Answer
time: 226ms
memory: 43688kb

input:

20
3063559 8439238 9999919
3063559 9999919 3005756
8381435 9999919 8439238
8381435 3005756 9999919
6923007 4319483 4852022
2130156 4319483 769223
9999899 3076892 6923007
6923007 2899379 4852022
3271584 4999968 493824
6049344 61728 5246880
4999968 4999968 9999936
5246880 3271584 3950592
7398784 99999...

output:

1
0
1
1
0
1
0
0
1
0
0
0
0
1
0
0
0
1
0
0

result:

wrong answer 2nd lines differ - expected: '1', found: '0'