QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#447566 | #7677. Easy Diameter Problem | ucup-team3564 | WA | 3ms | 6936kb | C++20 | 4.4kb | 2024-06-18 16:33:48 | 2024-06-18 16:33:48 |
Judging History
answer
// MagicDark
#include <bits/stdc++.h>
#define debug cerr << "\033[32m[" << __LINE__ << "]\033[0m "
#define SZ(x) ((int) x.size() - 1)
#define all(x) x.begin(), x.end()
#define ms(x, y) memset(x, y, sizeof x)
#define F(i, x, y) for (int i = (x); i <= (y); i++)
#define DF(i, x, y) for (int i = (x); i >= (y); i--)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
template <typename T> T& chkmax(T& x, T y) {return x = max(x, y);}
template <typename T> T& chkmin(T& x, T y) {return x = min(x, y);}
template <typename T> T& read(T &x) {
x = 0; int f = 1; char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = - f;
for (; isdigit(c); c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x *= f;
}
const int N = 5010, MOD = 1e9 + 7;
inline int& add(int &x, ll y) {return x = (x + y) % MOD;}
int n, x[N], y[N], cnt, d[N][N], mx, c, fa[N], e[N][N], f[2][N][N], ans, C[N][N], g[N][N];
vector <int> v[N];
int fac[N], ifac[N], inv[N];
inline void binom(int x) {
fac[0] = ifac[0] = inv[1] = 1;
F(i, 2, x) inv[i] = (ll) (MOD - MOD / i) * inv[MOD % i] % MOD;
F(i, 1, x) fac[i] = (ll) fac[i - 1] * i % MOD, ifac[i] = (ll) ifac[i - 1] * inv[i] % MOD;
F(i, 0, x) {
C[i][0] = 1;
F(j, 1, i) C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % MOD;
}
}
// inline int C(int x, int y) {return x < y || y < 0 ? 0 : (ll) fac[x] * ifac[y] % MOD * ifac[x - y] % MOD;}
void dfs(int id, int x, int fa, int dep) {
// debug << x << " " << id << " " << dep << endl;
::fa[x] = fa;
if (dep + 1 > mx) {
mx = dep + 1;
int w = x;
F(i, 1, mx >> 1) w = ::fa[w];
if (mx & 1) c = e[w][::fa[w]];
else c = w;
}
d[id][dep]++;
for (int i: v[x])
if (i != fa) dfs(id, i, x, dep + 1);
}
signed main() {
binom(read(n));
F(i, 1, n - 1) {
y[i << 1 | 1] = read(x[i << 1]), x[i << 1 | 1] = read(y[i << 1]);
e[x[i << 1]][y[i << 1]] = i << 1;
e[y[i << 1]][x[i << 1]] = i << 1 ^ 1;
v[x[i << 1]].push_back(y[i << 1]);
v[y[i << 1]].push_back(x[i << 1]);
}
F(i, 2, 2 * n - 1) dfs(i, y[i], x[i], 0);
// debug << mx << " " << c << endl;
if (mx & 1) {
int a = d[c][mx >> 1], b = d[c ^ 1][mx >> 1];
F(i, 0, a - 1) f[mx & 1 ^ 1][c][i] = (ll) fac[b] * C[i + b - 1][i] % MOD;
F(i, 0, b - 1) f[mx & 1 ^ 1][c ^ 1][i] = (ll) fac[a] * C[i + a - 1][i] % MOD;
} else {
for (int i: v[c]) {
int a = d[e[c][i]][(mx >> 1) - 1], b = d[e[c][i] ^ 1][mx >> 1];
// debug << a << " " << b << endl;
// debug << e[c][i] << endl;
F(j, 0, a - 1) f[mx & 1 ^ 1][e[c][i]][j] = (ll) fac[b] * C[j + b - 1][j] % MOD;
}
}
DF(i, mx - 1, 1) {
int cur = i & 1, to = cur ^ 1;
if (i & 1) {
F(j, 2, n * 2 - 1) {
int a = d[j][i >> 1], b = d[j ^ 1][i >> 1];
if (!a || !b) continue;
F(k, 0, a - 1) {
g[k][0] = ((k ? g[k - 1][0] : 0) + f[cur][j][k]) % MOD;
// if (f[cur][j][k]) debug << i << ' ' << j << " " << k << " " << f[cur][j][k] << endl;
f[cur][j][k] = 0;
F(l, 1, b - 1) g[k][l] = (g[k][l - 1] + (k ? g[k - 1][l] : 0)) % MOD;
add(f[to][j][k], (ll) g[k][b - 1] * fac[b]);
// F(l, 0, b - 1) add(f[to][j ^ 1][l], (ll) f[cur][j][k] * C[a - k - 1 + l][l] % MOD * fac[b]);
}
F(k, 0, b - 1) add(f[to][j ^ 1][k], (ll) g[a - 1][k] * fac[a]);
}
} else {
F(j, 2, n * 2 - 1) {
int a = d[j][i >> 1], b = d[j ^ 1][(i >> 1) - 1];
if (!a || !b) continue;
// debug << i << " " << j << " " << a << " " << b << endl;
F(k, 0, a - 1) {
// if (f[cur][j][k] != 1 || k) f[cur][j][k] = 0;
g[k][0] = ((k ? g[k - 1][0] : 0) + f[cur][j][k]) % MOD;
// if (f[cur][j][k]) debug << i << ' ' << j << " " << k << " " << f[cur][j][k] << endl;
f[cur][j][k] = 0;
F(l, 1, b) g[k][l] = (g[k][l - 1] + (k ? g[k - 1][l] : 0)) % MOD;
}
// debug << i << " " << j << endl;
F(k, 0, b - 1) add(f[to][j ^ 1][k], (ll) g[a - 1][k] * fac[a]);//, debug << "! " << k << " " << g[a - 1][k] << " " << fac[a] << endl;
// continue;
// debug << y[j] << endl;
for (int k: v[y[j]]) {
int c = d[e[y[j]][k]][(i >> 1) - 1];
if (k != x[j] && c) {
F(l, 0, c - 1) {
add(f[to][e[y[j]][k]][l], (ll) g[a - c + l][b - 1] * C[a - c + l][l] % MOD * fac[b] % MOD * fac[a - c]);
if (a - c + l) add(f[to][e[y[j]][k]][l], (ll) g[a - c + l - 1][b] * C[a - c + l - 1][l] * fac[b] % MOD * fac[a - c]);
}
}
}
}
}
}
F(i, 2, n * 2 - 1) add(ans, f[0][i][0]);
cout << ans;
return 0;
}
/* why?
*/
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3760kb
input:
3 1 2 3 2
output:
4
result:
ok 1 number(s): "4"
Test #2:
score: 0
Accepted
time: 1ms
memory: 3744kb
input:
5 4 1 4 5 1 2 1 3
output:
28
result:
ok 1 number(s): "28"
Test #3:
score: 0
Accepted
time: 1ms
memory: 3944kb
input:
7 5 7 2 5 2 1 1 6 3 6 4 1
output:
116
result:
ok 1 number(s): "116"
Test #4:
score: -100
Wrong Answer
time: 3ms
memory: 6936kb
input:
100 89 60 66 37 59 74 63 49 69 37 9 44 94 22 70 30 79 14 25 33 23 4 78 43 63 30 95 7 6 59 56 31 21 56 58 43 95 28 81 19 63 40 58 87 81 38 100 55 78 23 37 78 86 70 33 11 52 17 42 19 19 13 70 100 97 79 66 67 66 27 82 55 15 27 68 33 97 26 46 20 70 93 1 10 69 79 81 45 58 95 24 63 79 51 85 11 12 43 41 64...
output:
476393277
result:
wrong answer 1st numbers differ - expected: '748786623', found: '476393277'