QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#446233#8527. Power Divisionsucup-team3646TL 4274ms174072kbC++2017.9kb2024-06-17 02:23:192024-06-17 02:23:20

Judging History

你现在查看的是最新测评结果

  • [2024-06-17 02:23:20]
  • 评测
  • 测评结果:TL
  • 用时:4274ms
  • 内存:174072kb
  • [2024-06-17 02:23:19]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

#define ll long long
#define elif else if
#define vi vector<int>
#define vll vector<ll>
#define vvi vector<vi>
#define pii pair<int,int>


#define repname(a, b, c, d, e, ...) e
#define rep(...)                    repname(__VA_ARGS__, rep3, rep2, rep1, rep0)(__VA_ARGS__)
#define rep0(x)                     for (int rep_counter = 0; rep_counter < (x); ++rep_counter)
#define rep1(i, x)                  for (int i = 0; i < (x); ++i)
#define rep2(i, l, r)               for (int i = (l); i < (r); ++i)
#define rep3(i, l, r, c)            for (int i = (l); i < (r); i += (c))





struct ScalarInput {
		template<class T>
		operator T(){
				T ret;
				cin >> ret;
				return ret;
		}
};
struct VectorInput {
		size_t n;
		VectorInput(size_t n): n(n) {}
		template<class T>
		operator vector<T>(){
				vector<T> ret(n);
				for(T &x : ret) cin >> x;
				return ret;
		}
};
ScalarInput input(){ return ScalarInput(); }
VectorInput input(size_t n){ return VectorInput(n); }

template<typename T>
void print(vector<T> a){
	for(int i=0;i<a.size();i++){
		cout<<a[i]<<" \n"[i+1==a.size()];
	}
}

template<class T>
void print(T x){
		cout << x << '\n';
}
 
template <class Head, class... Tail>
void print(Head&& head, Tail&&... tail){
	cout << head << ' ';
	print(forward<Tail>(tail)...);
}


using u64=uint64_t;

inline static u64 a = 12345;

u64 next() {
    u64 x = a;
    x ^= x << 13;
    x ^= x >> 7;
    x ^= x << 17;
    return a = x;
}


#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif


#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

struct barrett {
    unsigned int _m;
    unsigned long long im;

    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    unsigned int umod() const { return _m; }

    unsigned int mul(unsigned int a, unsigned int b) const {

        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned long long y = x * _m;
        return (unsigned int)(z - y + (z < y ? _m : 0));
    }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b


        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


using namespace atcoder;
using mint=modint1000000007;

int op(int a,int b){
	return max(a,b);
}
int e(){
	return -1;
}


int m=1e6+100;
int N;
vector<int>A;
vector<vector<int>>edge;
vector<ll>H(m),cumH(m+1);

set<int>S,rev_S;


void calc(int l,int r){
	//cerr<<"calc "<<l<<" "<<r<<endl;
	if(l+1==r){
		edge[l].push_back(r);
		return;
	}
	int mid=(l+r)/2;

	ll hash=0;
	unordered_map<ll,vector<int>>mp1,mp2;

	for(int i=mid-1;i>=l;i--){
		int now=A[i];
		while(S.find(now)!=S.end()){
			S.erase(now);
			rev_S.insert(now);
			hash^=H[now];
			now++;
		}
		hash^=H[now];
		S.insert(now);
		rev_S.erase(now);

		int top_bit=*rbegin(S);
		int low_bit=*begin(S);
		int con_bit=*prev(rev_S.lower_bound(top_bit))+1;
		

		mp1[hash].push_back(i);
		ll hash2=hash^(cumH[top_bit+1]^cumH[con_bit+1]);
		mp2[hash2].push_back(i);
	}
	for(auto i:S){
		rev_S.insert(i);
	}

	S.clear();

	hash=0;
	for(int i=mid;i<r;i++){
		int now=A[i];
		while(S.find(now)!=S.end()){
			S.erase(now);
			hash^=H[now];
			now++;
		}
		hash^=H[now];
		S.insert(now);
		int top_bit=*rbegin(S);
		int low_bit=*begin(S);
		ll rev_hash=hash^(cumH[top_bit+1]^cumH[low_bit])^H[low_bit];
		for(auto j:mp1[rev_hash]){
			edge[j].push_back(i+1);
		}
		ll rev_hash2=rev_hash^H[top_bit+1];
		if(top_bit==low_bit)rev_hash2=hash;
		for(auto j:mp2[rev_hash2]){
			edge[j].push_back(i+1);
		}
	}
	for(auto i:S){
		rev_S.insert(i);
	}
	S.clear();
	calc(l,mid);
	calc(mid,r);
}

int main(){
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	rep(i,m)H[i]=next();
	cumH[0]=0;
	rep(i,m)cumH[i+1]=cumH[i]^H[i];
	vector<int>init(m);
	rep(i,m)init[i]=i;
	rep(i,m)rev_S.insert(i);

	cin>>N;
	A.resize(N);
	rep(i,N){
		cin>>A[i];
		A[i]++;
	}
	edge.resize(N);
	calc(0,N);

	vector<mint>dp(N+1,0);
	dp[0]=1;
	rep(l,N){
		sort(edge[l].begin(),edge[l].end());
		int tmp=-1;
		for(auto r:edge[l]){
			if(r!=tmp)dp[r]+=dp[l];
			tmp=r;
		}
	}
	print(dp[N].val());
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 200ms
memory: 69584kb

input:

5
2 0 0 1 1

output:

6

result:

ok 1 number(s): "6"

Test #2:

score: 0
Accepted
time: 194ms
memory: 69620kb

input:

1
0

output:

1

result:

ok 1 number(s): "1"

Test #3:

score: 0
Accepted
time: 206ms
memory: 69504kb

input:

2
1 1

output:

2

result:

ok 1 number(s): "2"

Test #4:

score: 0
Accepted
time: 213ms
memory: 69700kb

input:

3
2 1 1

output:

3

result:

ok 1 number(s): "3"

Test #5:

score: 0
Accepted
time: 199ms
memory: 69680kb

input:

4
3 2 2 3

output:

4

result:

ok 1 number(s): "4"

Test #6:

score: 0
Accepted
time: 208ms
memory: 69572kb

input:

5
3 4 4 2 4

output:

2

result:

ok 1 number(s): "2"

Test #7:

score: 0
Accepted
time: 208ms
memory: 69752kb

input:

7
3 4 3 5 6 3 4

output:

6

result:

ok 1 number(s): "6"

Test #8:

score: 0
Accepted
time: 221ms
memory: 69584kb

input:

10
8 6 5 6 7 8 6 8 9 9

output:

4

result:

ok 1 number(s): "4"

Test #9:

score: 0
Accepted
time: 215ms
memory: 69592kb

input:

96
5 1 0 2 5 5 2 4 2 4 4 2 3 4 0 2 1 4 3 1 2 0 2 2 3 2 4 5 3 5 2 0 2 2 5 3 0 4 5 3 5 4 4 3 1 2 0 5 4 5 0 2 3 2 4 0 0 4 2 0 2 5 3 3 1 5 5 1 1 1 0 5 0 3 0 2 1 1 0 5 0 3 3 4 4 5 3 0 2 2 0 5 4 5 0 5

output:

11332014

result:

ok 1 number(s): "11332014"

Test #10:

score: 0
Accepted
time: 217ms
memory: 69964kb

input:

480
2 0 4 4 1 0 0 3 1 1 4 2 5 5 4 2 1 2 4 4 1 3 4 3 0 5 2 0 2 5 1 0 5 0 0 5 5 0 2 5 2 2 3 1 4 3 5 4 5 2 4 4 4 4 1 4 0 3 4 3 4 1 0 4 3 4 5 4 3 5 0 2 2 0 1 5 4 4 2 0 3 3 3 4 3 0 5 5 3 1 5 1 0 1 0 4 3 0 5 1 4 1 4 3 0 1 3 5 0 3 3 1 0 4 1 1 2 0 1 2 0 3 5 2 0 5 5 5 5 3 5 1 0 2 5 2 2 0 2 0 2 3 5 1 2 1 5 4 ...

output:

506782981

result:

ok 1 number(s): "506782981"

Test #11:

score: 0
Accepted
time: 223ms
memory: 70368kb

input:

2400
0 2 2 0 5 4 3 2 3 2 5 4 5 4 4 5 2 2 4 2 2 0 1 0 5 0 4 4 0 0 5 0 4 0 1 3 4 5 0 3 1 0 4 0 2 5 0 3 3 3 3 1 0 5 5 3 1 3 5 2 4 0 5 0 4 5 4 2 2 1 5 2 2 4 1 0 5 1 5 0 1 2 0 0 3 5 4 0 0 1 1 1 4 2 0 5 1 3 3 5 0 4 4 1 5 5 3 4 4 4 0 2 4 0 5 1 3 1 5 0 5 5 1 3 0 3 1 2 0 1 1 3 5 2 3 4 0 3 0 5 4 0 4 3 5 0 5 2...

output:

586570528

result:

ok 1 number(s): "586570528"

Test #12:

score: 0
Accepted
time: 292ms
memory: 73876kb

input:

12000
2 2 1 2 0 2 5 3 2 0 1 3 2 5 4 0 0 5 3 2 0 2 3 4 3 2 1 4 3 0 3 5 4 1 0 2 4 1 3 2 3 5 0 3 0 0 4 0 4 5 1 0 4 1 1 1 5 4 3 0 3 5 4 5 2 5 0 1 2 3 5 5 2 5 4 2 0 4 4 3 0 0 2 5 0 3 4 2 5 4 2 1 4 5 1 1 2 3 0 3 3 3 3 4 0 5 3 4 0 3 0 2 0 0 2 0 3 4 2 2 0 1 0 5 3 0 2 0 2 2 1 0 5 3 5 4 5 5 0 4 0 4 1 4 4 3 2 ...

output:

201653965

result:

ok 1 number(s): "201653965"

Test #13:

score: 0
Accepted
time: 684ms
memory: 89952kb

input:

60000
2 5 0 3 2 3 5 3 5 5 4 1 1 5 3 0 1 1 2 5 5 5 0 3 2 0 3 2 3 3 0 0 1 4 3 1 4 2 3 3 0 5 1 0 1 1 5 5 4 0 5 4 1 3 1 3 5 3 2 4 4 4 5 4 3 2 3 2 4 5 2 0 4 5 1 2 0 4 0 5 1 3 4 1 2 4 1 1 3 3 0 1 1 3 0 0 2 3 3 2 1 4 1 2 4 3 3 5 2 5 3 4 3 0 2 1 1 1 5 1 2 4 2 3 1 2 1 0 2 0 1 1 5 5 3 4 2 5 2 4 5 3 0 5 1 4 2 ...

output:

592751350

result:

ok 1 number(s): "592751350"

Test #14:

score: 0
Accepted
time: 3318ms
memory: 169988kb

input:

300000
0 5 1 5 5 4 5 3 0 5 0 5 1 4 1 2 2 2 3 0 1 5 4 0 3 1 4 5 2 1 0 3 2 1 2 5 0 2 4 5 0 1 2 1 1 0 0 5 3 0 0 3 4 5 0 2 1 1 1 2 5 1 4 3 1 0 2 0 0 4 3 3 2 5 3 3 1 5 2 0 2 4 3 1 0 3 4 1 3 3 1 0 0 1 1 1 3 1 2 3 5 3 3 2 0 3 0 0 5 5 0 0 0 0 1 4 3 3 4 3 4 5 3 3 5 1 1 4 2 2 1 3 2 1 1 0 0 5 5 0 0 3 2 4 5 5 2...

output:

842503795

result:

ok 1 number(s): "842503795"

Test #15:

score: 0
Accepted
time: 2429ms
memory: 167120kb

input:

300000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...

output:

432100269

result:

ok 1 number(s): "432100269"

Test #16:

score: 0
Accepted
time: 3044ms
memory: 167096kb

input:

300000
1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000...

output:

432100269

result:

ok 1 number(s): "432100269"

Test #17:

score: 0
Accepted
time: 2980ms
memory: 163744kb

input:

299995
1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 0...

output:

261818019

result:

ok 1 number(s): "261818019"

Test #18:

score: 0
Accepted
time: 3290ms
memory: 173380kb

input:

299997
2 2 0 9 4 4 2 3 8 9 3 9 1 6 4 0 1 5 1 0 7 9 3 3 8 9 3 8 3 6 9 3 9 5 9 1 4 4 7 5 9 0 7 3 7 2 0 3 3 8 2 1 7 6 8 1 6 1 8 4 7 6 3 6 1 6 8 9 3 8 1 5 0 8 1 10 0 3 4 5 8 5 6 9 2 4 5 0 9 0 9 5 1 0 3 7 5 8 8 10 10 3 3 10 5 8 9 9 7 4 4 1 1 6 5 7 2 5 8 3 3 9 6 4 1 0 2 6 2 8 7 7 10 5 7 8 3 8 5 1 6 6 6 1 ...

output:

999738318

result:

ok 1 number(s): "999738318"

Test #19:

score: 0
Accepted
time: 3642ms
memory: 173724kb

input:

299999
97 34 33 30 15 73 31 69 60 63 79 87 78 13 49 58 23 38 91 28 70 70 14 98 56 59 81 66 29 21 10 51 94 32 41 98 16 48 67 62 55 5 17 81 30 91 39 93 73 74 46 74 41 99 19 10 0 16 72 95 84 40 97 17 76 10 42 50 66 97 4 30 71 74 46 5 75 87 55 82 38 94 14 82 49 10 23 21 19 99 52 100 71 29 64 73 54 88 2 ...

output:

799664563

result:

ok 1 number(s): "799664563"

Test #20:

score: 0
Accepted
time: 3968ms
memory: 173704kb

input:

299997
97 181 693 569 34 770 725 1 82 951 965 962 962 532 803 824 669 686 529 339 434 430 439 478 553 354 443 632 725 139 56 709 797 847 617 100 837 94 80 527 644 861 8 455 710 599 473 818 685 886 645 722 239 634 450 16 825 337 156 708 827 790 462 716 67 557 535 466 820 465 567 140 633 112 85 691 16...

output:

152812109

result:

ok 1 number(s): "152812109"

Test #21:

score: 0
Accepted
time: 4274ms
memory: 174072kb

input:

300000
7938 3542 362 8246 5914 9327 9031 9802 6879 5983 1052 8554 8571 187 3412 4806 1991 9465 7940 8741 5792 7136 6654 7716 2896 4212 3357 6278 3398 5631 4759 6295 7385 5487 699 3015 422 4849 4933 3169 3194 7014 7605 9619 8126 4673 5020 842 9477 2925 857 1263 3326 729 4638 3383 7716 887 7821 2009 7...

output:

294967268

result:

ok 1 number(s): "294967268"

Test #22:

score: -100
Time Limit Exceeded

input:

300000
68003 20603 19535 98755 78166 31928 28492 76831 77102 95079 32154 12348 91482 11514 67510 4208 30189 31364 77353 60045 60124 58954 32468 38599 70247 18763 32984 76656 86646 79971 63986 68195 33578 90458 79520 92707 17642 7744 26043 12273 28374 63264 97058 36502 6212 70591 51401 76682 41512 18...

output:


result: