QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#446232 | #8527. Power Divisions | ucup-team3646 | TL | 4867ms | 201260kb | C++20 | 17.9kb | 2024-06-17 02:23:03 | 2024-06-17 02:23:03 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define elif else if
#define vi vector<int>
#define vll vector<ll>
#define vvi vector<vi>
#define pii pair<int,int>
#define repname(a, b, c, d, e, ...) e
#define rep(...) repname(__VA_ARGS__, rep3, rep2, rep1, rep0)(__VA_ARGS__)
#define rep0(x) for (int rep_counter = 0; rep_counter < (x); ++rep_counter)
#define rep1(i, x) for (int i = 0; i < (x); ++i)
#define rep2(i, l, r) for (int i = (l); i < (r); ++i)
#define rep3(i, l, r, c) for (int i = (l); i < (r); i += (c))
struct ScalarInput {
template<class T>
operator T(){
T ret;
cin >> ret;
return ret;
}
};
struct VectorInput {
size_t n;
VectorInput(size_t n): n(n) {}
template<class T>
operator vector<T>(){
vector<T> ret(n);
for(T &x : ret) cin >> x;
return ret;
}
};
ScalarInput input(){ return ScalarInput(); }
VectorInput input(size_t n){ return VectorInput(n); }
template<typename T>
void print(vector<T> a){
for(int i=0;i<a.size();i++){
cout<<a[i]<<" \n"[i+1==a.size()];
}
}
template<class T>
void print(T x){
cout << x << '\n';
}
template <class Head, class... Tail>
void print(Head&& head, Tail&&... tail){
cout << head << ' ';
print(forward<Tail>(tail)...);
}
using u64=uint64_t;
inline static u64 a = 12345;
u64 next() {
u64 x = a;
x ^= x << 13;
x ^= x >> 7;
x ^= x << 17;
return a = x;
}
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned long long y = x * _m;
return (unsigned int)(z - y + (z < y ? _m : 0));
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
using namespace atcoder;
using mint=modint1000000007;
int op(int a,int b){
return max(a,b);
}
int e(){
return -1;
}
int m=1e6+100;
int N;
vector<int>A;
vector<vector<int>>edge;
vector<ll>H(m),cumH(m+1);
set<int>S,rev_S;
void calc(int l,int r){
//cerr<<"calc "<<l<<" "<<r<<endl;
if(l+1==r){
edge[l].push_back(r);
return;
}
int mid=(l+r)/2;
ll hash=0;
map<ll,vector<int>>mp1,mp2;
for(int i=mid-1;i>=l;i--){
int now=A[i];
while(S.find(now)!=S.end()){
S.erase(now);
rev_S.insert(now);
hash^=H[now];
now++;
}
hash^=H[now];
S.insert(now);
rev_S.erase(now);
int top_bit=*rbegin(S);
int low_bit=*begin(S);
int con_bit=*prev(rev_S.lower_bound(top_bit))+1;
mp1[hash].push_back(i);
ll hash2=hash^(cumH[top_bit+1]^cumH[con_bit+1]);
mp2[hash2].push_back(i);
}
for(auto i:S){
rev_S.insert(i);
}
S.clear();
hash=0;
for(int i=mid;i<r;i++){
int now=A[i];
while(S.find(now)!=S.end()){
S.erase(now);
hash^=H[now];
now++;
}
hash^=H[now];
S.insert(now);
int top_bit=*rbegin(S);
int low_bit=*begin(S);
ll rev_hash=hash^(cumH[top_bit+1]^cumH[low_bit])^H[low_bit];
for(auto j:mp1[rev_hash]){
edge[j].push_back(i+1);
}
ll rev_hash2=rev_hash^H[top_bit+1];
if(top_bit==low_bit)rev_hash2=hash;
for(auto j:mp2[rev_hash2]){
edge[j].push_back(i+1);
}
}
for(auto i:S){
rev_S.insert(i);
}
S.clear();
calc(l,mid);
calc(mid,r);
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
rep(i,m)H[i]=next();
cumH[0]=0;
rep(i,m)cumH[i+1]=cumH[i]^H[i];
vector<int>init(m);
rep(i,m)init[i]=i;
rep(i,m)rev_S.insert(i);
cin>>N;
A.resize(N);
rep(i,N){
cin>>A[i];
A[i]++;
}
edge.resize(N);
calc(0,N);
vector<mint>dp(N+1,0);
dp[0]=1;
rep(l,N){
sort(edge[l].begin(),edge[l].end());
int tmp=-1;
for(auto r:edge[l]){
if(r!=tmp)dp[r]+=dp[l];
tmp=r;
}
}
print(dp[N].val());
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 205ms
memory: 69476kb
input:
5 2 0 0 1 1
output:
6
result:
ok 1 number(s): "6"
Test #2:
score: 0
Accepted
time: 207ms
memory: 69444kb
input:
1 0
output:
1
result:
ok 1 number(s): "1"
Test #3:
score: 0
Accepted
time: 207ms
memory: 69628kb
input:
2 1 1
output:
2
result:
ok 1 number(s): "2"
Test #4:
score: 0
Accepted
time: 220ms
memory: 69760kb
input:
3 2 1 1
output:
3
result:
ok 1 number(s): "3"
Test #5:
score: 0
Accepted
time: 214ms
memory: 69560kb
input:
4 3 2 2 3
output:
4
result:
ok 1 number(s): "4"
Test #6:
score: 0
Accepted
time: 203ms
memory: 69580kb
input:
5 3 4 4 2 4
output:
2
result:
ok 1 number(s): "2"
Test #7:
score: 0
Accepted
time: 209ms
memory: 69588kb
input:
7 3 4 3 5 6 3 4
output:
6
result:
ok 1 number(s): "6"
Test #8:
score: 0
Accepted
time: 207ms
memory: 69716kb
input:
10 8 6 5 6 7 8 6 8 9 9
output:
4
result:
ok 1 number(s): "4"
Test #9:
score: 0
Accepted
time: 208ms
memory: 69624kb
input:
96 5 1 0 2 5 5 2 4 2 4 4 2 3 4 0 2 1 4 3 1 2 0 2 2 3 2 4 5 3 5 2 0 2 2 5 3 0 4 5 3 5 4 4 3 1 2 0 5 4 5 0 2 3 2 4 0 0 4 2 0 2 5 3 3 1 5 5 1 1 1 0 5 0 3 0 2 1 1 0 5 0 3 3 4 4 5 3 0 2 2 0 5 4 5 0 5
output:
11332014
result:
ok 1 number(s): "11332014"
Test #10:
score: 0
Accepted
time: 210ms
memory: 69724kb
input:
480 2 0 4 4 1 0 0 3 1 1 4 2 5 5 4 2 1 2 4 4 1 3 4 3 0 5 2 0 2 5 1 0 5 0 0 5 5 0 2 5 2 2 3 1 4 3 5 4 5 2 4 4 4 4 1 4 0 3 4 3 4 1 0 4 3 4 5 4 3 5 0 2 2 0 1 5 4 4 2 0 3 3 3 4 3 0 5 5 3 1 5 1 0 1 0 4 3 0 5 1 4 1 4 3 0 1 3 5 0 3 3 1 0 4 1 1 2 0 1 2 0 3 5 2 0 5 5 5 5 3 5 1 0 2 5 2 2 0 2 0 2 3 5 1 2 1 5 4 ...
output:
506782981
result:
ok 1 number(s): "506782981"
Test #11:
score: 0
Accepted
time: 237ms
memory: 70452kb
input:
2400 0 2 2 0 5 4 3 2 3 2 5 4 5 4 4 5 2 2 4 2 2 0 1 0 5 0 4 4 0 0 5 0 4 0 1 3 4 5 0 3 1 0 4 0 2 5 0 3 3 3 3 1 0 5 5 3 1 3 5 2 4 0 5 0 4 5 4 2 2 1 5 2 2 4 1 0 5 1 5 0 1 2 0 0 3 5 4 0 0 1 1 1 4 2 0 5 1 3 3 5 0 4 4 1 5 5 3 4 4 4 0 2 4 0 5 1 3 1 5 0 5 5 1 3 0 3 1 2 0 1 1 3 5 2 3 4 0 3 0 5 4 0 4 3 5 0 5 2...
output:
586570528
result:
ok 1 number(s): "586570528"
Test #12:
score: 0
Accepted
time: 287ms
memory: 74432kb
input:
12000 2 2 1 2 0 2 5 3 2 0 1 3 2 5 4 0 0 5 3 2 0 2 3 4 3 2 1 4 3 0 3 5 4 1 0 2 4 1 3 2 3 5 0 3 0 0 4 0 4 5 1 0 4 1 1 1 5 4 3 0 3 5 4 5 2 5 0 1 2 3 5 5 2 5 4 2 0 4 4 3 0 0 2 5 0 3 4 2 5 4 2 1 4 5 1 1 2 3 0 3 3 3 3 4 0 5 3 4 0 3 0 2 0 0 2 0 3 4 2 2 0 1 0 5 3 0 2 0 2 2 1 0 5 3 5 4 5 5 0 4 0 4 1 4 4 3 2 ...
output:
201653965
result:
ok 1 number(s): "201653965"
Test #13:
score: 0
Accepted
time: 765ms
memory: 94000kb
input:
60000 2 5 0 3 2 3 5 3 5 5 4 1 1 5 3 0 1 1 2 5 5 5 0 3 2 0 3 2 3 3 0 0 1 4 3 1 4 2 3 3 0 5 1 0 1 1 5 5 4 0 5 4 1 3 1 3 5 3 2 4 4 4 5 4 3 2 3 2 4 5 2 0 4 5 1 2 0 4 0 5 1 3 4 1 2 4 1 1 3 3 0 1 1 3 0 0 2 3 3 2 1 4 1 2 4 3 3 5 2 5 3 4 3 0 2 1 1 1 5 1 2 4 2 3 1 2 1 0 2 0 1 1 5 5 3 4 2 5 2 4 5 3 0 5 1 4 2 ...
output:
592751350
result:
ok 1 number(s): "592751350"
Test #14:
score: 0
Accepted
time: 4047ms
memory: 194212kb
input:
300000 0 5 1 5 5 4 5 3 0 5 0 5 1 4 1 2 2 2 3 0 1 5 4 0 3 1 4 5 2 1 0 3 2 1 2 5 0 2 4 5 0 1 2 1 1 0 0 5 3 0 0 3 4 5 0 2 1 1 1 2 5 1 4 3 1 0 2 0 0 4 3 3 2 5 3 3 1 5 2 0 2 4 3 1 0 3 4 1 3 3 1 0 0 1 1 1 3 1 2 3 5 3 3 2 0 3 0 0 5 5 0 0 0 0 1 4 3 3 4 3 4 5 3 3 5 1 1 4 2 2 1 3 2 1 1 0 0 5 5 0 0 3 2 4 5 5 2...
output:
842503795
result:
ok 1 number(s): "842503795"
Test #15:
score: 0
Accepted
time: 3030ms
memory: 182148kb
input:
300000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...
output:
432100269
result:
ok 1 number(s): "432100269"
Test #16:
score: 0
Accepted
time: 3783ms
memory: 182288kb
input:
300000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000...
output:
432100269
result:
ok 1 number(s): "432100269"
Test #17:
score: 0
Accepted
time: 3565ms
memory: 178756kb
input:
299995 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 0...
output:
261818019
result:
ok 1 number(s): "261818019"
Test #18:
score: 0
Accepted
time: 4150ms
memory: 199312kb
input:
299997 2 2 0 9 4 4 2 3 8 9 3 9 1 6 4 0 1 5 1 0 7 9 3 3 8 9 3 8 3 6 9 3 9 5 9 1 4 4 7 5 9 0 7 3 7 2 0 3 3 8 2 1 7 6 8 1 6 1 8 4 7 6 3 6 1 6 8 9 3 8 1 5 0 8 1 10 0 3 4 5 8 5 6 9 2 4 5 0 9 0 9 5 1 0 3 7 5 8 8 10 10 3 3 10 5 8 9 9 7 4 4 1 1 6 5 7 2 5 8 3 3 9 6 4 1 0 2 6 2 8 7 7 10 5 7 8 3 8 5 1 6 6 6 1 ...
output:
999738318
result:
ok 1 number(s): "999738318"
Test #19:
score: 0
Accepted
time: 4482ms
memory: 199652kb
input:
299999 97 34 33 30 15 73 31 69 60 63 79 87 78 13 49 58 23 38 91 28 70 70 14 98 56 59 81 66 29 21 10 51 94 32 41 98 16 48 67 62 55 5 17 81 30 91 39 93 73 74 46 74 41 99 19 10 0 16 72 95 84 40 97 17 76 10 42 50 66 97 4 30 71 74 46 5 75 87 55 82 38 94 14 82 49 10 23 21 19 99 52 100 71 29 64 73 54 88 2 ...
output:
799664563
result:
ok 1 number(s): "799664563"
Test #20:
score: 0
Accepted
time: 4867ms
memory: 201260kb
input:
299997 97 181 693 569 34 770 725 1 82 951 965 962 962 532 803 824 669 686 529 339 434 430 439 478 553 354 443 632 725 139 56 709 797 847 617 100 837 94 80 527 644 861 8 455 710 599 473 818 685 886 645 722 239 634 450 16 825 337 156 708 827 790 462 716 67 557 535 466 820 465 567 140 633 112 85 691 16...
output:
152812109
result:
ok 1 number(s): "152812109"
Test #21:
score: -100
Time Limit Exceeded
input:
300000 7938 3542 362 8246 5914 9327 9031 9802 6879 5983 1052 8554 8571 187 3412 4806 1991 9465 7940 8741 5792 7136 6654 7716 2896 4212 3357 6278 3398 5631 4759 6295 7385 5487 699 3015 422 4849 4933 3169 3194 7014 7605 9619 8126 4673 5020 842 9477 2925 857 1263 3326 729 4638 3383 7716 887 7821 2009 7...