QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#446193#8526. Polygon IIucup-team133AC ✓274ms3808kbC++2319.7kb2024-06-16 23:57:372024-06-16 23:57:37

Judging History

你现在查看的是最新测评结果

  • [2024-06-16 23:57:37]
  • 评测
  • 测评结果:AC
  • 用时:274ms
  • 内存:3808kb
  • [2024-06-16 23:57:37]
  • 提交

answer

#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif

template <class T> std::istream& operator>>(std::istream& is, std::vector<T>& v) {
    for (auto& e : v) {
        is >> e;
    }
    return is;
}

template <class T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {
    for (std::string_view sep = ""; const auto& e : v) {
        os << std::exchange(sep, " ") << e;
    }
    return os;
}

template <class T, class U = T> bool chmin(T& x, U&& y) {
    return y < x and (x = std::forward<U>(y), true);
}

template <class T, class U = T> bool chmax(T& x, U&& y) {
    return x < y and (x = std::forward<U>(y), true);
}

template <class T> void mkuni(std::vector<T>& v) {
    std::ranges::sort(v);
    auto result = std::ranges::unique(v);
    v.erase(result.begin(), result.end());
}

template <class T> int lwb(const std::vector<T>& v, const T& x) {
    return std::distance(v.begin(), std::ranges::lower_bound(v, x));
}

#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

template <typename T> struct Binomial {
    Binomial(int MAX = 0) : n(1), facs(1, T(1)), finvs(1, T(1)), invs(1, T(1)) {
        assert(T::mod() != 0);
        if (MAX > 0) extend(MAX + 1);
    }

    T fac(int i) {
        assert(i >= 0);
        while (n <= i) extend();
        return facs[i];
    }

    T finv(int i) {
        assert(i >= 0);
        while (n <= i) extend();
        return finvs[i];
    }

    T inv(int i) {
        assert(i >= 0);
        while (n <= i) extend();
        return invs[i];
    }

    T P(int n, int r) {
        if (n < 0 || n < r || r < 0) return T(0);
        return fac(n) * finv(n - r);
    }

    T C(int n, int r) {
        if (n < 0 || n < r || r < 0) return T(0);
        return fac(n) * finv(n - r) * finv(r);
    }

    T H(int n, int r) {
        if (n < 0 || r < 0) return T(0);
        return r == 0 ? 1 : C(n + r - 1, r);
    }

    T C_naive(int n, int r) {
        if (n < 0 || n < r || r < 0) return T(0);
        T res = 1;
        r = std::min(r, n - r);
        for (int i = 1; i <= r; i++) res *= inv(i) * (n--);
        return res;
    }

  private:
    int n;
    std::vector<T> facs, finvs, invs;

    inline void extend(int m = -1) {
        if (m == -1) m = n * 2;
        m = std::min(m, T::mod());
        if (n >= m) return;
        facs.resize(m);
        finvs.resize(m);
        invs.resize(m);
        for (int i = n; i < m; i++) facs[i] = facs[i - 1] * i;
        finvs[m - 1] = T(1) / facs[m - 1];
        invs[m - 1] = finvs[m - 1] * facs[m - 2];
        for (int i = m - 2; i >= n; i--) {
            finvs[i] = finvs[i + 1] * (i + 1);
            invs[i] = finvs[i] * facs[i - 1];
        }
        n = m;
    }
};

using ll = long long;

using namespace std;

using mint = atcoder::modint1000000007;

const int MAX_A = 55;

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(15);
    Binomial<mint> BINOM;
    int n;
    cin >> n;
    vector<int> a(n);
    for (int& val : a) cin >> val;

    vector<int> cnt(MAX_A, 0);
    for (int& val : a) cnt[val]++;
    vector<mint> interval(n);  // X_i ~ U(0, 1) i.i.d として X_1 + ... + X_n が [i, i + 1) に含まれる確率
    for (int i = 0; i < n; i++) {
        for (int k = 0; k <= i; k++) {
            mint add = BINOM.C(n, k) * (mint(i + 1 - k).pow(n) - mint(i - k).pow(n));
            interval[i] += (k & 1 ? -add : add);
        }
        interval[i] *= BINOM.finv(n);
    }
    assert(accumulate(interval.begin(), interval.end(), mint(0)) == 1);
    vector<int> pref(MAX_A, 0);
    for (int i = 0; i < MAX_A; i++) {
        pref[0] += cnt[i];
        pref[i] -= cnt[i];
    }
    for (int i = 0; i + 1 < MAX_A; i++) pref[i + 1] += pref[i];
    int tot = accumulate(pref.begin(), pref.end(), 0);
    mint ans = 1;
    vector<mint> dp(n + 1, 0), ndp(n + 1, 0);
    for (int i = 0; i < n; i++) dp[i] = interval[i];
    for (int i = 0; i < MAX_A; i++) {
        ans -= dp[0] * BINOM.inv(2).pow(tot) * cnt[i];
        tot -= pref[i];
        mint prob = BINOM.inv(2).pow(pref[i]);
        for (int j = 0; j <= n; j++) {
            mint& val = dp[j];
            if (val == 0) continue;
            for (int k = 0; k <= pref[i]; k++) {
                ndp[(j + k) >> 1] += val * prob * BINOM.C(pref[i], k);
            }
            val = 0;
        }
        swap(dp, ndp);
    }

    cout << ans.val() << "\n";
    return 0;
}

詳細信息

Test #1:

score: 100
Accepted
time: 1ms
memory: 3600kb

input:

3
0 2 0

output:

166666668

result:

ok 1 number(s): "166666668"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3768kb

input:

3
0 0 0

output:

500000004

result:

ok 1 number(s): "500000004"

Test #3:

score: 0
Accepted
time: 0ms
memory: 3588kb

input:

3
5 6 7

output:

208333335

result:

ok 1 number(s): "208333335"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3644kb

input:

3
0 25 50

output:

889268532

result:

ok 1 number(s): "889268532"

Test #5:

score: 0
Accepted
time: 1ms
memory: 3608kb

input:

10
39 11 25 1 12 44 10 46 27 15

output:

913863330

result:

ok 1 number(s): "913863330"

Test #6:

score: 0
Accepted
time: 0ms
memory: 3604kb

input:

57
43 22 3 16 7 5 24 32 25 16 41 28 24 30 28 10 32 48 41 43 34 37 48 34 3 9 21 41 49 25 2 0 36 45 34 33 45 9 42 29 43 9 38 34 44 33 44 6 46 39 22 36 40 37 19 34 3

output:

400729664

result:

ok 1 number(s): "400729664"

Test #7:

score: 0
Accepted
time: 1ms
memory: 3620kb

input:

100
44 32 6 6 6 44 12 32 6 9 23 12 14 23 12 14 23 49 6 14 32 23 49 9 32 24 23 6 32 6 49 23 12 44 24 9 14 6 24 44 24 23 44 44 49 32 49 12 49 49 24 49 12 23 3 14 6 3 3 6 12 3 49 24 49 24 24 32 23 32 49 14 3 24 49 3 32 14 44 24 49 3 32 23 49 44 44 9 23 14 49 9 3 6 44 24 3 3 12 44

output:

32585394

result:

ok 1 number(s): "32585394"

Test #8:

score: 0
Accepted
time: 48ms
memory: 3640kb

input:

1000
2 27 0 0 27 0 2 0 27 0 27 27 0 0 0 0 0 2 0 27 0 2 2 0 27 27 0 0 0 27 2 2 2 27 0 2 27 2 0 2 27 0 0 27 0 27 0 0 27 2 27 2 2 27 2 27 0 0 27 0 27 0 2 27 2 2 0 27 27 27 27 0 27 0 27 0 2 2 0 2 2 27 0 0 27 0 0 27 0 2 27 27 2 27 2 0 0 2 27 27 27 27 27 27 2 2 0 2 2 0 2 2 0 27 0 27 2 2 0 27 27 0 0 27 2 2...

output:

94588769

result:

ok 1 number(s): "94588769"

Test #9:

score: 0
Accepted
time: 141ms
memory: 3804kb

input:

1000
40 14 47 3 32 18 3 49 22 23 32 18 23 24 18 32 23 39 32 27 49 49 22 50 50 22 23 47 14 47 50 32 22 24 49 49 18 22 18 22 50 3 32 47 40 3 39 22 24 47 32 49 49 22 32 39 14 49 39 3 32 22 24 18 39 49 24 18 40 23 23 49 39 39 18 39 27 49 14 27 27 14 18 24 39 22 40 50 18 18 18 39 39 18 23 23 22 3 49 47 2...

output:

626481946

result:

ok 1 number(s): "626481946"

Test #10:

score: 0
Accepted
time: 106ms
memory: 3648kb

input:

1000
28 32 35 9 21 11 43 23 45 15 23 2 8 3 39 41 31 9 45 35 27 14 40 28 31 9 31 9 9 40 8 6 27 43 3 27 23 49 27 6 28 25 11 9 15 27 38 27 12 28 25 2 15 27 45 6 27 1 21 38 1 25 27 21 49 31 31 14 39 39 8 39 40 28 15 31 21 14 43 38 11 8 8 23 9 11 15 2 11 39 32 14 28 15 40 49 27 9 23 9 9 6 21 2 2 1 14 11 ...

output:

644443122

result:

ok 1 number(s): "644443122"

Test #11:

score: 0
Accepted
time: 109ms
memory: 3560kb

input:

972
39 15 23 0 40 29 43 47 6 9 30 9 2 8 19 9 45 25 26 38 33 18 6 33 44 48 24 8 4 16 33 42 33 31 36 33 13 16 3 12 21 19 1 30 24 23 43 35 0 33 31 32 23 31 36 12 26 0 29 48 28 33 28 28 3 49 9 5 29 8 29 28 49 41 33 49 5 49 6 9 50 25 39 11 1 36 6 44 10 34 32 31 25 31 36 36 3 9 50 35 47 43 25 46 30 18 5 2...

output:

684920840

result:

ok 1 number(s): "684920840"

Test #12:

score: 0
Accepted
time: 0ms
memory: 3612kb

input:

147
34 47 42 23 46 3 41 9 15 42 21 32 24 1 19 46 29 35 38 20 2 43 36 47 19 23 20 9 6 28 48 46 45 21 19 41 31 36 50 7 11 25 0 43 38 46 21 2 26 40 32 14 45 35 47 21 13 26 26 30 3 36 35 45 36 21 21 25 2 40 35 50 23 3 16 44 40 42 6 37 36 19 20 14 30 47 13 49 47 45 26 12 15 21 42 30 19 5 21 9 28 8 3 34 4...

output:

972735235

result:

ok 1 number(s): "972735235"

Test #13:

score: 0
Accepted
time: 120ms
memory: 3504kb

input:

1000
36 15 9 5 35 37 17 30 24 13 18 32 14 35 36 26 23 7 21 15 43 15 21 11 33 33 9 16 5 26 1 45 48 27 20 20 20 48 42 27 22 7 39 35 11 38 33 47 22 34 43 4 32 0 47 35 48 8 9 3 40 3 27 22 20 43 12 37 30 18 2 37 37 35 44 3 42 14 20 24 44 5 17 38 46 41 28 23 21 7 13 15 35 38 21 14 6 37 37 6 13 34 32 13 23...

output:

179933029

result:

ok 1 number(s): "179933029"

Test #14:

score: 0
Accepted
time: 132ms
memory: 3808kb

input:

1000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7...

output:

540327646

result:

ok 1 number(s): "540327646"

Test #15:

score: 0
Accepted
time: 115ms
memory: 3648kb

input:

1000
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 46 46 46 46 46 46 46 46 46 46 46 46 46 4...

output:

169647494

result:

ok 1 number(s): "169647494"

Test #16:

score: 0
Accepted
time: 261ms
memory: 3640kb

input:

1000
11 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 40 50 50 50 50 50 21 50 12 50 50 50 50 50 0 50 50 50 38 50 50 50 50 50 50 25 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 7 50 50 50 50 50 50 50 50 ...

output:

862643524

result:

ok 1 number(s): "862643524"

Test #17:

score: 0
Accepted
time: 274ms
memory: 3652kb

input:

1000
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5...

output:

819612372

result:

ok 1 number(s): "819612372"

Test #18:

score: 0
Accepted
time: 273ms
memory: 3656kb

input:

1000
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5...

output:

18215579

result:

ok 1 number(s): "18215579"

Test #19:

score: 0
Accepted
time: 0ms
memory: 3596kb

input:

16
0 2 24 1 23 9 14 17 28 29 25 27 15 19 11 20

output:

115090079

result:

ok 1 number(s): "115090079"

Test #20:

score: 0
Accepted
time: 27ms
memory: 3644kb

input:

1000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...

output:

819612372

result:

ok 1 number(s): "819612372"

Test #21:

score: 0
Accepted
time: 0ms
memory: 3620kb

input:

18
9 4 21 5 22 6 9 16 3 14 11 2 0 12 6 3 7 21

output:

0

result:

ok 1 number(s): "0"

Extra Test:

score: 0
Extra Test Passed