QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#445689#8526. Polygon IIucup-team133AC ✓146ms6256kbC++1721.1kb2024-06-16 08:22:012024-06-16 08:22:01

Judging History

你现在查看的是最新测评结果

  • [2024-06-16 08:22:01]
  • 评测
  • 测评结果:AC
  • 用时:146ms
  • 内存:6256kb
  • [2024-06-16 08:22:01]
  • 提交

answer

#include <iostream>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <queue>
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <random>
#include <stdio.h>
#include <fstream>
#include <functional>
#include <cassert>
#include <unordered_map>
#include <bitset>
#include <chrono>


#include <utility>

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder



using namespace std;
using namespace atcoder;

using mint = modint1000000007;







#define rep(i,n) for (int i=0;i<n;i+=1)
#define rrep(i,n) for (int i=n-1;i>-1;i--)
#define pb push_back
#define all(x) (x).begin(), (x).end()

#define debug(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << " )\n";

template<class T>
using vec = vector<T>;
template<class T>
using vvec = vec<vec<T>>;
template<class T>
using vvvec = vec<vvec<T>>;
using ll = long long;
using pii = pair<int,int>;
using pll = pair<ll,ll>;


template<class T>
bool chmin(T &a, T b){
  if (a>b){
    a = b;
    return true;
  }
  return false;
}

template<class T>
bool chmax(T &a, T b){
  if (a<b){
    a = b;
    return true;
  }
  return false;
}

template<class T>
T sum(vec<T> x){
  T res=0;
  for (auto e:x){
    res += e;
  }
  return res;
}

template<class T>
void printv(vec<T> x){
  for (auto e:x){
    cout<<e<<" ";
  }
  cout<<endl;
}



template<class T,class U>
ostream& operator<<(ostream& os, const pair<T,U>& A){
  os << "(" << A.first <<", " << A.second << ")";
  return os;
}

template<class T>
ostream& operator<<(ostream& os, const set<T>& S){
  os << "set{";
  for (auto a:S){
    os << a;
    auto it = S.find(a);
    it++;
    if (it!=S.end()){
      os << ", ";
    }
  }
  os << "}";
  return os;
}

template<class T>
ostream& operator<<(ostream& os, const tuple<T,T,T>& a){
  auto [x,y,z] = a;
  os << "(" << x << ", " << y << ", " << z << ")";
  return os;
}

template<class T>
ostream& operator<<(ostream& os, const map<ll,T>& A){
  os << "map{";
  for (auto e:A){
    os << e.first;
    os << ":";
    os << e.second;
    os << ", ";
  }
  os << "}";
  return os;
}

template<class T>
ostream& operator<<(ostream& os, const vec<T>& A){
  os << "[";
  rep(i,A.size()){
    os << A[i];
    if (i!=A.size()-1){
      os << ", ";
    }
  }
  os << "]" ;
  return os;
}

ostream& operator<<(ostream& os, const mint& a){
  os << a.val();
  return os;
}

mint g1[200100],g2[200100],inverse[200100];

void init_comb(){
  g1[0] = 1; g1[1] = 1; g2[0] = 1; g2[1] = 1; inverse[1] = 1; 
  for (int n=2;n<=200000;n++){
    g1[n] = g1[n-1] * n;
    inverse[n] = -inverse[1000000007%n] * (1000000007/n);
    g2[n] = g2[n-1] * inverse[n];
  }
}

mint comb(int n,int r){
  if (r < 0 || n < r) return 0;
  return g1[n] * g2[r] * g2[n-r];
}

vec<mint> naive_convolve(vec<mint> f, vec<mint> g){
  int n = f.size(), m = g.size();
  vec<mint> res(n+m-1);
  rep(i,n){
    rep(j,m){
      res[i+j] += f[i] * g[j];
    }
  }
  return res;
}

mint calc(int N,int K,vec<int> e_cnt,vec<mint> f){
  /*
  [x^2^K]{prod (1-x^(2^i))^e_cnt[i]} * 1/(1-x)^N * f を求める

  [x^2^K]{prod (1-x^(2^i))^e_cnt[i]} * 1/(1-x)^N * f
  = [x^2^K]{prod (1-x^(2^i))^e_cnt[i]} * 1/(1-x)^(N-e_cnt[0]) * f
  = [x^2^K]{prod (1-x^(2^i))^e_cnt[i]} * 1/(1-x^2)^(N-e_cnt[0]) * f * (1+x)^(N-e_cnt[0])
  = [x^2^(K-1)]{prod (1-x^(2^i))^e_cnt[i+1]} * 1/(1-x)^(N-e_cnt[0]) * [f * (1+x)^e_cnt[0]の偶数次数]
  */

  assert (K < e_cnt.size());

  int p = N+1;
  for (int i=0;i<e_cnt.size();i++){
    if (i == K) return f[1];
    p -= e_cnt[i];

    vec<mint> g(p+1,0);
    rep(j,p+1){
      g[j] = comb(p,j);
    }
    
    f = naive_convolve(f,g);
    int m = f.size()-1;
    
    for (int i=0;2*i<=m;i++){
      f[i] = f[2*i];
    }
    f.resize(m/2+1);
    
  }
  return f[0];
}

mint calc2(int N,vec<int> e_cnt,vec<mint> f){
  int p = N+1;
  mint res = 0;
  for (int i=0;i<e_cnt.size();i++){
    res += e_cnt[i] * f[1];
    p -= e_cnt[i];

    vec<mint> g(p+1,0);
    rep(j,p+1){
      g[j] = comb(p,j);
    }
    
    f = naive_convolve(f,g);
    int m = f.size()-1;
    
    for (int i=0;2*i<=m;i++){
      f[i] = f[2*i];
    }
    f.resize(m/2+1);
    
  }
  return res;
}


void solve(){
  int N;
  cin>>N;
  vec<int> e_cnt(51,0);
  mint all_prod = 1;
  rep(i,N){
    int a;
    cin>>a;
    e_cnt[a]++;
    all_prod *= inverse[2].pow(a);
  }

  vec<mint> f1(N,0);

  for (int t=0;t<N-1;t++){
    for (int k=0;k<=t;k++){
      if (k & 1){
        f1[t] -= comb(N-1,k) * (mint(t+1-k).pow(N-1) - mint(t-k).pow(N-1));
      }
      else{
        f1[t] += comb(N-1,k) * (mint(t+1-k).pow(N-1) - mint(t-k).pow(N-1));
      }
    }
    f1[t] *= g2[N-1];
  }

  vec<mint> f2(N+1,0);
  mint cum = 0;
  for (int t=0;t<N-1;t++){
    mint C = cum;
    for (int k=0;k<=t;k++){
      if (k & 1){
        C -= comb(N-1,k) * ( - mint(t-k).pow(N-1)) * g2[N-1];
      }
      else{
        C += comb(N-1,k) * ( - mint(t-k).pow(N-1)) * g2[N-1];
      }
    }
    

    f2[t+1] = C;
    for (int k=0;k<=t;k++){
      if (k & 1){
        f2[t+1] -= comb(N-1,k) * (mint(t+1-k).pow(N) - mint(t-k).pow(N)) * g2[N];
      }
      else{
        f2[t+1] += comb(N-1,k) * (mint(t+1-k).pow(N) - mint(t-k).pow(N)) * g2[N];
      }
    }

    cum += f1[t];

  }
  f2[N] = 1;
  for (int i=N-1;0<=i;i--){
    f2[i+1] -= f2[i];
  }

  //debug(f2);

  //mint minus = 0;
  //for (int i=0;i<51;i++){
    //if (e_cnt[i] == 0) continue;
    //e_cnt[i]--;
    //mint xxx = calc(N,i,e_cnt,f2) * (e_cnt[i]+1);
    //minus += xxx;
    //debug(xxx);
    //e_cnt[i]++;
  //}
  
  mint res = 1 - all_prod * calc2(N,e_cnt,f2);
  cout << res.val() << "\n";






}


int main(){
  ios::sync_with_stdio(false);
  std::cin.tie(nullptr);
  cout << fixed << setprecision(15);

  init_comb();

  int T = 1;
  while (T--){
    solve();
  }
    
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 2ms
memory: 5912kb

input:

3
0 2 0

output:

166666668

result:

ok 1 number(s): "166666668"

Test #2:

score: 0
Accepted
time: 2ms
memory: 5860kb

input:

3
0 0 0

output:

500000004

result:

ok 1 number(s): "500000004"

Test #3:

score: 0
Accepted
time: 0ms
memory: 5916kb

input:

3
5 6 7

output:

208333335

result:

ok 1 number(s): "208333335"

Test #4:

score: 0
Accepted
time: 2ms
memory: 6092kb

input:

3
0 25 50

output:

889268532

result:

ok 1 number(s): "889268532"

Test #5:

score: 0
Accepted
time: 2ms
memory: 5944kb

input:

10
39 11 25 1 12 44 10 46 27 15

output:

913863330

result:

ok 1 number(s): "913863330"

Test #6:

score: 0
Accepted
time: 2ms
memory: 6020kb

input:

57
43 22 3 16 7 5 24 32 25 16 41 28 24 30 28 10 32 48 41 43 34 37 48 34 3 9 21 41 49 25 2 0 36 45 34 33 45 9 42 29 43 9 38 34 44 33 44 6 46 39 22 36 40 37 19 34 3

output:

400729664

result:

ok 1 number(s): "400729664"

Test #7:

score: 0
Accepted
time: 2ms
memory: 5928kb

input:

100
44 32 6 6 6 44 12 32 6 9 23 12 14 23 12 14 23 49 6 14 32 23 49 9 32 24 23 6 32 6 49 23 12 44 24 9 14 6 24 44 24 23 44 44 49 32 49 12 49 49 24 49 12 23 3 14 6 3 3 6 12 3 49 24 49 24 24 32 23 32 49 14 3 24 49 3 32 14 44 24 49 3 32 23 49 44 44 9 23 14 49 9 3 6 44 24 3 3 12 44

output:

32585394

result:

ok 1 number(s): "32585394"

Test #8:

score: 0
Accepted
time: 81ms
memory: 5892kb

input:

1000
2 27 0 0 27 0 2 0 27 0 27 27 0 0 0 0 0 2 0 27 0 2 2 0 27 27 0 0 0 27 2 2 2 27 0 2 27 2 0 2 27 0 0 27 0 27 0 0 27 2 27 2 2 27 2 27 0 0 27 0 27 0 2 27 2 2 0 27 27 27 27 0 27 0 27 0 2 2 0 2 2 27 0 0 27 0 0 27 0 2 27 27 2 27 2 0 0 2 27 27 27 27 27 27 2 2 0 2 2 0 2 2 0 27 0 27 2 2 0 27 27 0 0 27 2 2...

output:

94588769

result:

ok 1 number(s): "94588769"

Test #9:

score: 0
Accepted
time: 108ms
memory: 6008kb

input:

1000
40 14 47 3 32 18 3 49 22 23 32 18 23 24 18 32 23 39 32 27 49 49 22 50 50 22 23 47 14 47 50 32 22 24 49 49 18 22 18 22 50 3 32 47 40 3 39 22 24 47 32 49 49 22 32 39 14 49 39 3 32 22 24 18 39 49 24 18 40 23 23 49 39 39 18 39 27 49 14 27 27 14 18 24 39 22 40 50 18 18 18 39 39 18 23 23 22 3 49 47 2...

output:

626481946

result:

ok 1 number(s): "626481946"

Test #10:

score: 0
Accepted
time: 98ms
memory: 6008kb

input:

1000
28 32 35 9 21 11 43 23 45 15 23 2 8 3 39 41 31 9 45 35 27 14 40 28 31 9 31 9 9 40 8 6 27 43 3 27 23 49 27 6 28 25 11 9 15 27 38 27 12 28 25 2 15 27 45 6 27 1 21 38 1 25 27 21 49 31 31 14 39 39 8 39 40 28 15 31 21 14 43 38 11 8 8 23 9 11 15 2 11 39 32 14 28 15 40 49 27 9 23 9 9 6 21 2 2 1 14 11 ...

output:

644443122

result:

ok 1 number(s): "644443122"

Test #11:

score: 0
Accepted
time: 94ms
memory: 5892kb

input:

972
39 15 23 0 40 29 43 47 6 9 30 9 2 8 19 9 45 25 26 38 33 18 6 33 44 48 24 8 4 16 33 42 33 31 36 33 13 16 3 12 21 19 1 30 24 23 43 35 0 33 31 32 23 31 36 12 26 0 29 48 28 33 28 28 3 49 9 5 29 8 29 28 49 41 33 49 5 49 6 9 50 25 39 11 1 36 6 44 10 34 32 31 25 31 36 36 3 9 50 35 47 43 25 46 30 18 5 2...

output:

684920840

result:

ok 1 number(s): "684920840"

Test #12:

score: 0
Accepted
time: 4ms
memory: 5916kb

input:

147
34 47 42 23 46 3 41 9 15 42 21 32 24 1 19 46 29 35 38 20 2 43 36 47 19 23 20 9 6 28 48 46 45 21 19 41 31 36 50 7 11 25 0 43 38 46 21 2 26 40 32 14 45 35 47 21 13 26 26 30 3 36 35 45 36 21 21 25 2 40 35 50 23 3 16 44 40 42 6 37 36 19 20 14 30 47 13 49 47 45 26 12 15 21 42 30 19 5 21 9 28 8 3 34 4...

output:

972735235

result:

ok 1 number(s): "972735235"

Test #13:

score: 0
Accepted
time: 92ms
memory: 5948kb

input:

1000
36 15 9 5 35 37 17 30 24 13 18 32 14 35 36 26 23 7 21 15 43 15 21 11 33 33 9 16 5 26 1 45 48 27 20 20 20 48 42 27 22 7 39 35 11 38 33 47 22 34 43 4 32 0 47 35 48 8 9 3 40 3 27 22 20 43 12 37 30 18 2 37 37 35 44 3 42 14 20 24 44 5 17 38 46 41 28 23 21 7 13 15 35 38 21 14 6 37 37 6 13 34 32 13 23...

output:

179933029

result:

ok 1 number(s): "179933029"

Test #14:

score: 0
Accepted
time: 97ms
memory: 6016kb

input:

1000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7...

output:

540327646

result:

ok 1 number(s): "540327646"

Test #15:

score: 0
Accepted
time: 100ms
memory: 5944kb

input:

1000
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 46 46 46 46 46 46 46 46 46 46 46 46 46 4...

output:

169647494

result:

ok 1 number(s): "169647494"

Test #16:

score: 0
Accepted
time: 144ms
memory: 6256kb

input:

1000
11 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 40 50 50 50 50 50 21 50 12 50 50 50 50 50 0 50 50 50 38 50 50 50 50 50 50 25 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 7 50 50 50 50 50 50 50 50 ...

output:

862643524

result:

ok 1 number(s): "862643524"

Test #17:

score: 0
Accepted
time: 143ms
memory: 5960kb

input:

1000
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5...

output:

819612372

result:

ok 1 number(s): "819612372"

Test #18:

score: 0
Accepted
time: 146ms
memory: 6248kb

input:

1000
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5...

output:

18215579

result:

ok 1 number(s): "18215579"

Test #19:

score: 0
Accepted
time: 0ms
memory: 5904kb

input:

16
0 2 24 1 23 9 14 17 28 29 25 27 15 19 11 20

output:

115090079

result:

ok 1 number(s): "115090079"

Test #20:

score: 0
Accepted
time: 71ms
memory: 6188kb

input:

1000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...

output:

819612372

result:

ok 1 number(s): "819612372"

Test #21:

score: 0
Accepted
time: 2ms
memory: 5908kb

input:

18
9 4 21 5 22 6 9 16 3 14 11 2 0 12 6 3 7 21

output:

0

result:

ok 1 number(s): "0"

Extra Test:

score: 0
Extra Test Passed