QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#445474#8527. Power Divisionsucup-team1134#RE 1021ms104220kbC++2321.1kb2024-06-16 02:44:312024-06-16 02:44:32

Judging History

你现在查看的是最新测评结果

  • [2024-06-16 02:44:32]
  • 评测
  • 测评结果:RE
  • 用时:1021ms
  • 内存:104220kb
  • [2024-06-16 02:44:31]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define mp make_pair
#define si(x) int(x.size())
const int mod1=900000011,mod2=900000221,MAX=310005,INF=15<<26;

//modintのみ

// from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9
// (based on AtCoder STL)

#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {
    
    namespace internal {
        
#ifndef _MSC_VER
        template <class T>
        using is_signed_int128 =
        typename std::conditional<std::is_same<T, __int128_t>::value ||
        std::is_same<T, __int128>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using is_unsigned_int128 =
        typename std::conditional<std::is_same<T, __uint128_t>::value ||
        std::is_same<T, unsigned __int128>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using make_unsigned_int128 =
        typename std::conditional<std::is_same<T, __int128_t>::value,
        __uint128_t,
        unsigned __int128>;
        
        template <class T>
        using is_integral = typename std::conditional<std::is_integral<T>::value ||
        is_signed_int128<T>::value ||
        is_unsigned_int128<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                         std::is_signed<T>::value) ||
        is_signed_int128<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using is_unsigned_int =
        typename std::conditional<(is_integral<T>::value &&
                                   std::is_unsigned<T>::value) ||
        is_unsigned_int128<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using to_unsigned = typename std::conditional<
        is_signed_int128<T>::value,
        make_unsigned_int128<T>,
        typename std::conditional<std::is_signed<T>::value,
        std::make_unsigned<T>,
        std::common_type<T>>::type>::type;
        
#else
        
        template <class T> using is_integral = typename std::is_integral<T>;
        
        template <class T>
        using is_signed_int =
        typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using is_unsigned_int =
        typename std::conditional<is_integral<T>::value &&
        std::is_unsigned<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using to_unsigned = typename std::conditional<is_signed_int<T>::value,
        std::make_unsigned<T>,
        std::common_type<T>>::type;
        
#endif
        
        template <class T>
        using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
        
        template <class T>
        using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
        
        template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
        
    }  // namespace internal
    
}  // namespace atcoder

#include <utility>

namespace atcoder {
    
    namespace internal {
        
        constexpr long long safe_mod(long long x, long long m) {
            x %= m;
            if (x < 0) x += m;
            return x;
        }
        
        struct barrett {
            unsigned int _m;
            unsigned long long im;
            
            barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
            
            unsigned int umod() const { return _m; }
            
            unsigned int mul(unsigned int a, unsigned int b) const {
                
                unsigned long long z = a;
                z *= b;
#ifdef _MSC_VER
                unsigned long long x;
                _umul128(z, im, &x);
#else
                unsigned long long x =
                (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
                unsigned int v = (unsigned int)(z - x * _m);
                if (_m <= v) v += _m;
                return v;
            }
        };
        
        constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
            if (m == 1) return 0;
            unsigned int _m = (unsigned int)(m);
            unsigned long long r = 1;
            unsigned long long y = safe_mod(x, m);
            while (n) {
                if (n & 1) r = (r * y) % _m;
                y = (y * y) % _m;
                n >>= 1;
            }
            return r;
        }
        
        constexpr bool is_prime_constexpr(int n) {
            if (n <= 1) return false;
            if (n == 2 || n == 7 || n == 61) return true;
            if (n % 2 == 0) return false;
            long long d = n - 1;
            while (d % 2 == 0) d /= 2;
            for (long long a : {2, 7, 61}) {
                long long t = d;
                long long y = pow_mod_constexpr(a, t, n);
                while (t != n - 1 && y != 1 && y != n - 1) {
                    y = y * y % n;
                    t <<= 1;
                }
                if (y != n - 1 && t % 2 == 0) {
                    return false;
                }
            }
            return true;
        }
        template <int n> constexpr bool is_prime = is_prime_constexpr(n);
        
        constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
            a = safe_mod(a, b);
            if (a == 0) return {b, 0};
            
            long long s = b, t = a;
            long long m0 = 0, m1 = 1;
            
            while (t) {
                long long u = s / t;
                s -= t * u;
                m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b
                
                
                auto tmp = s;
                s = t;
                t = tmp;
                tmp = m0;
                m0 = m1;
                m1 = tmp;
            }
            if (m0 < 0) m0 += b / s;
            return {s, m0};
        }
        
        constexpr int primitive_root_constexpr(int m) {
            if (m == 2) return 1;
            if (m == 167772161) return 3;
            if (m == 469762049) return 3;
            if (m == 754974721) return 11;
            if (m == 998244353) return 3;
            int divs[20] = {};
            divs[0] = 2;
            int cnt = 1;
            int x = (m - 1) / 2;
            while (x % 2 == 0) x /= 2;
            for (int i = 3; (long long)(i)*i <= x; i += 2) {
                if (x % i == 0) {
                    divs[cnt++] = i;
                    while (x % i == 0) {
                        x /= i;
                    }
                }
            }
            if (x > 1) {
                divs[cnt++] = x;
            }
            for (int g = 2;; g++) {
                bool ok = true;
                for (int i = 0; i < cnt; i++) {
                    if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                        ok = false;
                        break;
                    }
                }
                if (ok) return g;
            }
        }
        template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
        
    }  // namespace internal
    
}  // namespace atcoder

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {
    
    namespace internal {
        
        struct modint_base {};
        struct static_modint_base : modint_base {};
        
        template <class T> using is_modint = std::is_base_of<modint_base, T>;
        template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
        
    }  // namespace internal
    
    template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
    struct static_modint : internal::static_modint_base {
        using mint = static_modint;
        
    public:
        static constexpr int mod() { return m; }
        static mint raw(int v) {
            mint x;
            x._v = v;
            return x;
        }
        
        static_modint() : _v(0) {}
        template <class T, internal::is_signed_int_t<T>* = nullptr>
        static_modint(T v) {
            long long x = (long long)(v % (long long)(umod()));
            if (x < 0) x += umod();
            _v = (unsigned int)(x);
        }
        template <class T, internal::is_unsigned_int_t<T>* = nullptr>
        static_modint(T v) {
            _v = (unsigned int)(v % umod());
        }
        static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
        
        unsigned int val() const { return _v; }
        
        mint& operator++() {
            _v++;
            if (_v == umod()) _v = 0;
            return *this;
        }
        mint& operator--() {
            if (_v == 0) _v = umod();
            _v--;
            return *this;
        }
        mint operator++(int) {
            mint result = *this;
            ++*this;
            return result;
        }
        mint operator--(int) {
            mint result = *this;
            --*this;
            return result;
        }
        
        mint& operator+=(const mint& rhs) {
            _v += rhs._v;
            if (_v >= umod()) _v -= umod();
            return *this;
        }
        mint& operator-=(const mint& rhs) {
            _v -= rhs._v;
            if (_v >= umod()) _v += umod();
            return *this;
        }
        mint& operator*=(const mint& rhs) {
            unsigned long long z = _v;
            z *= rhs._v;
            _v = (unsigned int)(z % umod());
            return *this;
        }
        mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
        
        mint operator+() const { return *this; }
        mint operator-() const { return mint() - *this; }
        
        mint pow(long long n) const {
            assert(0 <= n);
            mint x = *this, r = 1;
            while (n) {
                if (n & 1) r *= x;
                x *= x;
                n >>= 1;
            }
            return r;
        }
        mint inv() const {
            if (prime) {
                assert(_v);
                return pow(umod() - 2);
            } else {
                auto eg = internal::inv_gcd(_v, m);
                assert(eg.first == 1);
                return eg.second;
            }
        }
        
        friend mint operator+(const mint& lhs, const mint& rhs) {
            return mint(lhs) += rhs;
        }
        friend mint operator-(const mint& lhs, const mint& rhs) {
            return mint(lhs) -= rhs;
        }
        friend mint operator*(const mint& lhs, const mint& rhs) {
            return mint(lhs) *= rhs;
        }
        friend mint operator/(const mint& lhs, const mint& rhs) {
            return mint(lhs) /= rhs;
        }
        friend bool operator==(const mint& lhs, const mint& rhs) {
            return lhs._v == rhs._v;
        }
        friend bool operator!=(const mint& lhs, const mint& rhs) {
            return lhs._v != rhs._v;
        }
        
    private:
        unsigned int _v;
        static constexpr unsigned int umod() { return m; }
        static constexpr bool prime = internal::is_prime<m>;
    };
    
    template <int id> struct dynamic_modint : internal::modint_base {
        using mint = dynamic_modint;
        
    public:
        static int mod() { return (int)(bt.umod()); }
        static void set_mod(int m) {
            assert(1 <= m);
            bt = internal::barrett(m);
        }
        static mint raw(int v) {
            mint x;
            x._v = v;
            return x;
        }
        
        dynamic_modint() : _v(0) {}
        template <class T, internal::is_signed_int_t<T>* = nullptr>
        dynamic_modint(T v) {
            long long x = (long long)(v % (long long)(mod()));
            if (x < 0) x += mod();
            _v = (unsigned int)(x);
        }
        template <class T, internal::is_unsigned_int_t<T>* = nullptr>
        dynamic_modint(T v) {
            _v = (unsigned int)(v % mod());
        }
        dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
        
        unsigned int val() const { return _v; }
        
        mint& operator++() {
            _v++;
            if (_v == umod()) _v = 0;
            return *this;
        }
        mint& operator--() {
            if (_v == 0) _v = umod();
            _v--;
            return *this;
        }
        mint operator++(int) {
            mint result = *this;
            ++*this;
            return result;
        }
        mint operator--(int) {
            mint result = *this;
            --*this;
            return result;
        }
        
        mint& operator+=(const mint& rhs) {
            _v += rhs._v;
            if (_v >= umod()) _v -= umod();
            return *this;
        }
        mint& operator-=(const mint& rhs) {
            _v += mod() - rhs._v;
            if (_v >= umod()) _v -= umod();
            return *this;
        }
        mint& operator*=(const mint& rhs) {
            _v = bt.mul(_v, rhs._v);
            return *this;
        }
        mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
        
        mint operator+() const { return *this; }
        mint operator-() const { return mint() - *this; }
        
        mint pow(long long n) const {
            assert(0 <= n);
            mint x = *this, r = 1;
            while (n) {
                if (n & 1) r *= x;
                x *= x;
                n >>= 1;
            }
            return r;
        }
        mint inv() const {
            auto eg = internal::inv_gcd(_v, mod());
            assert(eg.first == 1);
            return eg.second;
        }
        
        friend mint operator+(const mint& lhs, const mint& rhs) {
            return mint(lhs) += rhs;
        }
        friend mint operator-(const mint& lhs, const mint& rhs) {
            return mint(lhs) -= rhs;
        }
        friend mint operator*(const mint& lhs, const mint& rhs) {
            return mint(lhs) *= rhs;
        }
        friend mint operator/(const mint& lhs, const mint& rhs) {
            return mint(lhs) /= rhs;
        }
        friend bool operator==(const mint& lhs, const mint& rhs) {
            return lhs._v == rhs._v;
        }
        friend bool operator!=(const mint& lhs, const mint& rhs) {
            return lhs._v != rhs._v;
        }
        
    private:
        unsigned int _v;
        static internal::barrett bt;
        static unsigned int umod() { return bt.umod(); }
    };
    template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
    
    using modint998244353 = static_modint<998244353>;
    using modint1000000007 = static_modint<1000000007>;
    using modint = dynamic_modint<-1>;
    
    namespace internal {
        
        template <class T>
        using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
        
        template <class T>
        using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
        
        template <class> struct is_dynamic_modint : public std::false_type {};
        template <int id>
        struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
        
        template <class T>
        using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
        
    }  // namespace internal
    
}  // namespace atcoder

using mint=atcoder::modint1000000007;

//fastset

// https://www.dropbox.com/s/1zxohqaxrb87uft/Gifted_Infants_The_University_of_Tokyo___erated_files-job_14.pdf?dl=0

using uint = unsigned int ; using ll = long long ; using ull = unsigned long long ; template < class T > using V = vector <T>; template < class T > using VV = V <V<T>>;

int popcnt ( uint x ) { return __builtin_popcount(x); } int popcnt ( ull x ) { return __builtin_popcountll(x); } int bsr ( uint x ) { return 31 - __builtin_clz(x); } int bsr ( ull x ) { return 63 - __builtin_clzll(x); } int bsf ( uint x ) { return __builtin_ctz(x); } int bsf ( ull x ) { return __builtin_ctzll(x); }

struct FastSet {
    static constexpr uint B = 64 ;
    int n, lg;
    VV<ull> seg;
    void init(int _n){
        n=_n;
        do {
            seg.push_back(V<ull>((_n + B - 1 ) / B));
            _n = (_n + B - 1 ) / B;
        }while (_n > 1 );
        lg = seg.size();
    }
    bool operator []( int i) const {
        return (seg[ 0 ][i / B] >> (i % B) & 1 ) != 0 ;
    }
    void set ( int i) {
        for ( int h = 0 ; h < lg; h++) {
            seg[h][i / B] |= 1ULL << (i % B); i /= B;
        }
    }
    void reset ( int i) {
        for ( int h = 0 ; h < lg; h++) {
            seg[h][i / B] &= ~( 1ULL << (i % B));
            if (seg[h][i / B]) break ;
            i /= B;
        }
    }
    int next ( int i) {
        if (i < 0) i = 0;
        if (i > n) i = n;
        for ( int h = 0 ; h < lg; h++) {
            if (i / B == seg[h].size()) break ;
            ull d = seg[h][i / B] >> (i % B);
            if (!d) {
                i = i / B + 1 ;
                continue ;
            }
            i += bsf(d);
            for ( int g = h - 1 ; g >= 0 ; g--) {
                i *= B; i += bsf(seg[g][i / B]);
            }
            return i;
        }
        return n;
    }
    // i以上
    int prev ( int i) {
        if (i < 0) i = 0;
        if (i > n) i = n;
        i--;
        for ( int h = 0 ; h < lg; h++) {
            if (i == -1 ) break ;
            ull d = seg[h][i / B] << ( 63 - i % 64 );
            if (!d) {
                i = i / B - 1 ;
                continue ;
            }
            i += bsr(d) - (B - 1 );
            for ( int g = h - 1 ; g >= 0 ; g--) {
                i *= B;
                i += bsr(seg[g][i / B]);
            }
            return i;
        }
        return -1 ;
    }
    // i未満
};

FastSet FS;

mint dp[MAX];

ll A[MAX];
ll N;
ll beki1[MAX],beki2[MAX];

void solve(int l,int r){
    if(l==r) return;
    if(l+1==r){
        dp[r]+=dp[l];
        return;
    }
    int m=(l+r)/2;
    
    solve(l,m);
    
    map<pair<ll,ll>,vector<int>> ML,MR;
    vector<array<ll,4>> quL,quR;
    {
        ll s1=0,s2=0;
        for(ll i=m-1;i>=l;i--){
            s1+=beki1[A[i]];
            if(s1>=mod1) s1-=mod1;
            s2+=beki2[A[i]];
            if(s2>=mod2) s2-=mod2;
            int now=A[i];
            while(FS[now]){
                FS.reset(now);now++;
            }
            FS.set(now);
            ML[mp(s1,s2)].push_back(i);
            quL.push_back({i,FS.prev(MAX-1),s1,s2});
        }
        while(1){
            int z=FS.next(0);
            if(z==MAX) break;
            FS.reset(z);
        }
    }
    {
        ll s1=0,s2=0;
        for(ll i=m;i<r;i++){
            s1+=beki1[A[i]];
            if(s1>=mod1) s1-=mod1;
            s2+=beki2[A[i]];
            if(s2>=mod2) s2-=mod2;
            int now=A[i];
            while(FS[now]){
                FS.reset(now);now++;
            }
            FS.set(now);
            MR[mp(s1,s2)].push_back(i);
            quR.push_back({i,FS.prev(MAX-1),s1,s2});
        }
        while(1){
            int z=FS.next(0);
            if(z==MAX) break;
            FS.reset(z);
        }
    }
    
    for(auto [i,z,s1,s2]:quL){
        ll t1=beki1[z+1]-s1;
        if(t1<0) t1+=mod1;
        ll t2=beki2[z+1]-s2;
        if(t2<0) t2+=mod2;
        if(MR.count(mp(t1,t2))){
            for(int j:MR[mp(t1,t2)]){
                dp[j+1]+=dp[i];
            }
        }
    }
    for(auto [i,z,s1,s2]:quR){
        ll t1=beki1[z+1]-s1;
        if(t1<0) t1+=mod1;
        ll t2=beki2[z+1]-s2;
        if(t2<0) t2+=mod2;
        if(s1==t1&&s2==t2) continue;
        
        if(ML.count(mp(t1,t2))){
            for(int j:ML[mp(t1,t2)]){
                dp[i+1]+=dp[j];
            }
        }
    }
    
    solve(m,r);
}

int main(){
    
    std::ifstream in("text.txt");
    std::cin.rdbuf(in.rdbuf());
    cin.tie(0);
    ios::sync_with_stdio(false);
    
    FS.init(MAX);
    
    beki1[0]=beki2[0]=1;
    for(int i=1;i<MAX;i++){
        beki1[i]=beki1[i-1]*2;
        beki2[i]=beki2[i-1]*2;
        beki1[i]%=mod1;
        beki2[i]%=mod2;
    }
    
    cin>>N;
    for(int i=0;i<N;i++){
        //A[i]=1;
        cin>>A[i];
    }
    
    dp[0]=1;
    
    solve(0,N);
    
    cout<<dp[N].val()<<endl;
}


詳細信息

Test #1:

score: 100
Accepted
time: 0ms
memory: 12108kb

input:

5
2 0 0 1 1

output:

6

result:

ok 1 number(s): "6"

Test #2:

score: 0
Accepted
time: 0ms
memory: 12132kb

input:

1
0

output:

1

result:

ok 1 number(s): "1"

Test #3:

score: 0
Accepted
time: 0ms
memory: 11584kb

input:

2
1 1

output:

2

result:

ok 1 number(s): "2"

Test #4:

score: 0
Accepted
time: 0ms
memory: 12140kb

input:

3
2 1 1

output:

3

result:

ok 1 number(s): "3"

Test #5:

score: 0
Accepted
time: 3ms
memory: 11240kb

input:

4
3 2 2 3

output:

4

result:

ok 1 number(s): "4"

Test #6:

score: 0
Accepted
time: 0ms
memory: 12128kb

input:

5
3 4 4 2 4

output:

2

result:

ok 1 number(s): "2"

Test #7:

score: 0
Accepted
time: 0ms
memory: 12076kb

input:

7
3 4 3 5 6 3 4

output:

6

result:

ok 1 number(s): "6"

Test #8:

score: 0
Accepted
time: 1ms
memory: 11436kb

input:

10
8 6 5 6 7 8 6 8 9 9

output:

4

result:

ok 1 number(s): "4"

Test #9:

score: 0
Accepted
time: 1ms
memory: 12088kb

input:

96
5 1 0 2 5 5 2 4 2 4 4 2 3 4 0 2 1 4 3 1 2 0 2 2 3 2 4 5 3 5 2 0 2 2 5 3 0 4 5 3 5 4 4 3 1 2 0 5 4 5 0 2 3 2 4 0 0 4 2 0 2 5 3 3 1 5 5 1 1 1 0 5 0 3 0 2 1 1 0 5 0 3 3 4 4 5 3 0 2 2 0 5 4 5 0 5

output:

11332014

result:

ok 1 number(s): "11332014"

Test #10:

score: 0
Accepted
time: 4ms
memory: 9964kb

input:

480
2 0 4 4 1 0 0 3 1 1 4 2 5 5 4 2 1 2 4 4 1 3 4 3 0 5 2 0 2 5 1 0 5 0 0 5 5 0 2 5 2 2 3 1 4 3 5 4 5 2 4 4 4 4 1 4 0 3 4 3 4 1 0 4 3 4 5 4 3 5 0 2 2 0 1 5 4 4 2 0 3 3 3 4 3 0 5 5 3 1 5 1 0 1 0 4 3 0 5 1 4 1 4 3 0 1 3 5 0 3 3 1 0 4 1 1 2 0 1 2 0 3 5 2 0 5 5 5 5 3 5 1 0 2 5 2 2 0 2 0 2 3 5 1 2 1 5 4 ...

output:

506782981

result:

ok 1 number(s): "506782981"

Test #11:

score: 0
Accepted
time: 7ms
memory: 10556kb

input:

2400
0 2 2 0 5 4 3 2 3 2 5 4 5 4 4 5 2 2 4 2 2 0 1 0 5 0 4 4 0 0 5 0 4 0 1 3 4 5 0 3 1 0 4 0 2 5 0 3 3 3 3 1 0 5 5 3 1 3 5 2 4 0 5 0 4 5 4 2 2 1 5 2 2 4 1 0 5 1 5 0 1 2 0 0 3 5 4 0 0 1 1 1 4 2 0 5 1 3 3 5 0 4 4 1 5 5 3 4 4 4 0 2 4 0 5 1 3 1 5 0 5 5 1 3 0 3 1 2 0 1 1 3 5 2 3 4 0 3 0 5 4 0 4 3 5 0 5 2...

output:

586570528

result:

ok 1 number(s): "586570528"

Test #12:

score: 0
Accepted
time: 21ms
memory: 15420kb

input:

12000
2 2 1 2 0 2 5 3 2 0 1 3 2 5 4 0 0 5 3 2 0 2 3 4 3 2 1 4 3 0 3 5 4 1 0 2 4 1 3 2 3 5 0 3 0 0 4 0 4 5 1 0 4 1 1 1 5 4 3 0 3 5 4 5 2 5 0 1 2 3 5 5 2 5 4 2 0 4 4 3 0 0 2 5 0 3 4 2 5 4 2 1 4 5 1 1 2 3 0 3 3 3 3 4 0 5 3 4 0 3 0 2 0 0 2 0 3 4 2 2 0 1 0 5 3 0 2 0 2 2 1 0 5 3 5 4 5 5 0 4 0 4 1 4 4 3 2 ...

output:

201653965

result:

ok 1 number(s): "201653965"

Test #13:

score: 0
Accepted
time: 159ms
memory: 29336kb

input:

60000
2 5 0 3 2 3 5 3 5 5 4 1 1 5 3 0 1 1 2 5 5 5 0 3 2 0 3 2 3 3 0 0 1 4 3 1 4 2 3 3 0 5 1 0 1 1 5 5 4 0 5 4 1 3 1 3 5 3 2 4 4 4 5 4 3 2 3 2 4 5 2 0 4 5 1 2 0 4 0 5 1 3 4 1 2 4 1 1 3 3 0 1 1 3 0 0 2 3 3 2 1 4 1 2 4 3 3 5 2 5 3 4 3 0 2 1 1 1 5 1 2 4 2 3 1 2 1 0 2 0 1 1 5 5 3 4 2 5 2 4 5 3 0 5 1 4 2 ...

output:

592751350

result:

ok 1 number(s): "592751350"

Test #14:

score: 0
Accepted
time: 1000ms
memory: 102984kb

input:

300000
0 5 1 5 5 4 5 3 0 5 0 5 1 4 1 2 2 2 3 0 1 5 4 0 3 1 4 5 2 1 0 3 2 1 2 5 0 2 4 5 0 1 2 1 1 0 0 5 3 0 0 3 4 5 0 2 1 1 1 2 5 1 4 3 1 0 2 0 0 4 3 3 2 5 3 3 1 5 2 0 2 4 3 1 0 3 4 1 3 3 1 0 0 1 1 1 3 1 2 3 5 3 3 2 0 3 0 0 5 5 0 0 0 0 1 4 3 3 4 3 4 5 3 3 5 1 1 4 2 2 1 3 2 1 1 0 0 5 5 0 0 3 2 4 5 5 2...

output:

842503795

result:

ok 1 number(s): "842503795"

Test #15:

score: 0
Accepted
time: 1021ms
memory: 104220kb

input:

300000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...

output:

432100269

result:

ok 1 number(s): "432100269"

Test #16:

score: -100
Runtime Error

input:

300000
1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000...

output:


result: