QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#445456 | #8527. Power Divisions | ucup-team1134# | TL | 1418ms | 148680kb | C++23 | 18.4kb | 2024-06-16 02:35:03 | 2024-06-16 02:35:04 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define mp make_pair
#define si(x) int(x.size())
const int mod1=900000011,mod2=900000221,MAX=310005,INF=15<<26;
//modintのみ
// from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9
// (based on AtCoder STL)
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#include <utility>
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
for (long long a : {2, 7, 61}) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
using mint=atcoder::modint1000000007;
vector<int> G[MAX];
mint dp[MAX];
ll A[MAX];
ll N;
ll beki1[MAX],beki2[MAX];
void solve(int l,int r){
if(l==r) return;
if(l+1==r){
G[r].push_back(l);
return;
}
int m=(l+r)/2;
map<pair<ll,ll>,vector<int>> ML,MR;
vector<array<ll,4>> quL,quR;
{
set<ll> SE;
ll s1=0,s2=0;
for(ll i=m-1;i>=l;i--){
s1+=beki1[A[i]];s1%=mod1;
s2+=beki2[A[i]];s2%=mod2;
int now=A[i];
while(SE.count(now)){
SE.erase(now);now++;
}
SE.insert(now);
ML[mp(s1,s2)].push_back(i);
quL.push_back({i,*SE.rbegin(),s1,s2});
}
}
{
set<int> SE;
ll s1=0,s2=0;
for(ll i=m;i<r;i++){
s1+=beki1[A[i]];s1%=mod1;
s2+=beki2[A[i]];s2%=mod2;
int now=A[i];
while(SE.count(now)){
SE.erase(now);now++;
}
SE.insert(now);
MR[mp(s1,s2)].push_back(i);
quR.push_back({i,*SE.rbegin(),s1,s2});
}
}
for(auto [i,z,s1,s2]:quL){
ll t1=(beki1[z+1]-s1+mod1)%mod1;
ll t2=(beki2[z+1]-s2+mod2)%mod2;
if(MR.count(mp(t1,t2))){
for(int j:MR[mp(t1,t2)]){
G[j+1].push_back(i);
}
}
}
for(auto [i,z,s1,s2]:quR){
ll t1=(beki1[z+1]-s1+mod1)%mod1;
ll t2=(beki2[z+1]-s2+mod2)%mod2;
if(s1==t1&&s2==t2) continue;
if(ML.count(mp(t1,t2))){
for(int j:ML[mp(t1,t2)]){
G[i+1].push_back(j);
}
}
}
solve(l,m);
solve(m,r);
}
int main(){
std::ifstream in("text.txt");
std::cin.rdbuf(in.rdbuf());
cin.tie(0);
ios::sync_with_stdio(false);
beki1[0]=beki2[0]=1;
for(int i=1;i<MAX;i++){
beki1[i]=beki1[i-1]*2;
beki2[i]=beki2[i-1]*2;
beki1[i]%=mod1;
beki2[i]%=mod2;
}
cin>>N;
for(int i=0;i<N;i++){
//A[i]=1;
cin>>A[i];
}
solve(0,N);
dp[0]=1;
for(int i=1;i<=N;i++){
for(int j:G[i]) dp[i]+=dp[j];
}
cout<<dp[N].val()<<endl;
}
詳細信息
Test #1:
score: 100
Accepted
time: 5ms
memory: 11496kb
input:
5 2 0 0 1 1
output:
6
result:
ok 1 number(s): "6"
Test #2:
score: 0
Accepted
time: 1ms
memory: 9864kb
input:
1 0
output:
1
result:
ok 1 number(s): "1"
Test #3:
score: 0
Accepted
time: 0ms
memory: 9680kb
input:
2 1 1
output:
2
result:
ok 1 number(s): "2"
Test #4:
score: 0
Accepted
time: 4ms
memory: 9708kb
input:
3 2 1 1
output:
3
result:
ok 1 number(s): "3"
Test #5:
score: 0
Accepted
time: 4ms
memory: 9596kb
input:
4 3 2 2 3
output:
4
result:
ok 1 number(s): "4"
Test #6:
score: 0
Accepted
time: 0ms
memory: 9708kb
input:
5 3 4 4 2 4
output:
2
result:
ok 1 number(s): "2"
Test #7:
score: 0
Accepted
time: 2ms
memory: 9604kb
input:
7 3 4 3 5 6 3 4
output:
6
result:
ok 1 number(s): "6"
Test #8:
score: 0
Accepted
time: 1ms
memory: 9716kb
input:
10 8 6 5 6 7 8 6 8 9 9
output:
4
result:
ok 1 number(s): "4"
Test #9:
score: 0
Accepted
time: 1ms
memory: 9684kb
input:
96 5 1 0 2 5 5 2 4 2 4 4 2 3 4 0 2 1 4 3 1 2 0 2 2 3 2 4 5 3 5 2 0 2 2 5 3 0 4 5 3 5 4 4 3 1 2 0 5 4 5 0 2 3 2 4 0 0 4 2 0 2 5 3 3 1 5 5 1 1 1 0 5 0 3 0 2 1 1 0 5 0 3 3 4 4 5 3 0 2 2 0 5 4 5 0 5
output:
11332014
result:
ok 1 number(s): "11332014"
Test #10:
score: 0
Accepted
time: 3ms
memory: 10056kb
input:
480 2 0 4 4 1 0 0 3 1 1 4 2 5 5 4 2 1 2 4 4 1 3 4 3 0 5 2 0 2 5 1 0 5 0 0 5 5 0 2 5 2 2 3 1 4 3 5 4 5 2 4 4 4 4 1 4 0 3 4 3 4 1 0 4 3 4 5 4 3 5 0 2 2 0 1 5 4 4 2 0 3 3 3 4 3 0 5 5 3 1 5 1 0 1 0 4 3 0 5 1 4 1 4 3 0 1 3 5 0 3 3 1 0 4 1 1 2 0 1 2 0 3 5 2 0 5 5 5 5 3 5 1 0 2 5 2 2 0 2 0 2 3 5 1 2 1 5 4 ...
output:
506782981
result:
ok 1 number(s): "506782981"
Test #11:
score: 0
Accepted
time: 11ms
memory: 10552kb
input:
2400 0 2 2 0 5 4 3 2 3 2 5 4 5 4 4 5 2 2 4 2 2 0 1 0 5 0 4 4 0 0 5 0 4 0 1 3 4 5 0 3 1 0 4 0 2 5 0 3 3 3 3 1 0 5 5 3 1 3 5 2 4 0 5 0 4 5 4 2 2 1 5 2 2 4 1 0 5 1 5 0 1 2 0 0 3 5 4 0 0 1 1 1 4 2 0 5 1 3 3 5 0 4 4 1 5 5 3 4 4 4 0 2 4 0 5 1 3 1 5 0 5 5 1 3 0 3 1 2 0 1 1 3 5 2 3 4 0 3 0 5 4 0 4 3 5 0 5 2...
output:
586570528
result:
ok 1 number(s): "586570528"
Test #12:
score: 0
Accepted
time: 35ms
memory: 13492kb
input:
12000 2 2 1 2 0 2 5 3 2 0 1 3 2 5 4 0 0 5 3 2 0 2 3 4 3 2 1 4 3 0 3 5 4 1 0 2 4 1 3 2 3 5 0 3 0 0 4 0 4 5 1 0 4 1 1 1 5 4 3 0 3 5 4 5 2 5 0 1 2 3 5 5 2 5 4 2 0 4 4 3 0 0 2 5 0 3 4 2 5 4 2 1 4 5 1 1 2 3 0 3 3 3 3 4 0 5 3 4 0 3 0 2 0 0 2 0 3 4 2 2 0 1 0 5 3 0 2 0 2 2 1 0 5 3 5 4 5 5 0 4 0 4 1 4 4 3 2 ...
output:
201653965
result:
ok 1 number(s): "201653965"
Test #13:
score: 0
Accepted
time: 221ms
memory: 30036kb
input:
60000 2 5 0 3 2 3 5 3 5 5 4 1 1 5 3 0 1 1 2 5 5 5 0 3 2 0 3 2 3 3 0 0 1 4 3 1 4 2 3 3 0 5 1 0 1 1 5 5 4 0 5 4 1 3 1 3 5 3 2 4 4 4 5 4 3 2 3 2 4 5 2 0 4 5 1 2 0 4 0 5 1 3 4 1 2 4 1 1 3 3 0 1 1 3 0 0 2 3 3 2 1 4 1 2 4 3 3 5 2 5 3 4 3 0 2 1 1 1 5 1 2 4 2 3 1 2 1 0 2 0 1 1 5 5 3 4 2 5 2 4 5 3 0 5 1 4 2 ...
output:
592751350
result:
ok 1 number(s): "592751350"
Test #14:
score: 0
Accepted
time: 1418ms
memory: 119388kb
input:
300000 0 5 1 5 5 4 5 3 0 5 0 5 1 4 1 2 2 2 3 0 1 5 4 0 3 1 4 5 2 1 0 3 2 1 2 5 0 2 4 5 0 1 2 1 1 0 0 5 3 0 0 3 4 5 0 2 1 1 1 2 5 1 4 3 1 0 2 0 0 4 3 3 2 5 3 3 1 5 2 0 2 4 3 1 0 3 4 1 3 3 1 0 0 1 1 1 3 1 2 3 5 3 3 2 0 3 0 0 5 5 0 0 0 0 1 4 3 3 4 3 4 5 3 3 5 1 1 4 2 2 1 3 2 1 1 0 0 5 5 0 0 3 2 4 5 5 2...
output:
842503795
result:
ok 1 number(s): "842503795"
Test #15:
score: 0
Accepted
time: 1359ms
memory: 148680kb
input:
300000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...
output:
432100269
result:
ok 1 number(s): "432100269"
Test #16:
score: -100
Time Limit Exceeded
input:
300000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000...