QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#443226 | #8527. Power Divisions | ucup-team896# | RE | 19ms | 35088kb | C++23 | 13.4kb | 2024-06-15 14:50:21 | 2024-06-15 14:50:22 |
Judging History
answer
/* _ _ _ _ __ __ __
/ \ _ _ | |_ | |__ ___ _ __ _ ___ _ __ ___ | | __ / /_ / /_ / /_
/ _ \ | | | | | __| | '_ \ / _ \ | '__| (_) / __| | '_ ` _ \ | |/ / | '_ \ | '_ \ | '_ \
/ ___ \ | |_| | | |_ | | | | | (_) | | | _ | (__ | | | | | | | < | (_) | | (_) | | (_) |
/_/ \_\ \__,_| \__| |_| |_| \___/ |_| (_) \___| |_| |_| |_| |_|\_\ \___/ \___/ \___/
[Created Time: 2024-06-15 14:23:03]
[Last Modified Time: 2024-06-15 14:49:45] */
#pragma GCC optimize("Ofast", "unroll-loops")
#include<bits/stdc++.h>
#ifdef LOCAL
#include"debug.h"
#else
#define D(...) ((void)0)
#endif
using namespace std; using ll = long long;
#define For(i, j, k) for ( int i = (j) ; i <= (k) ; i++ )
#define Fol(i, j, k) for ( int i = (j) ; i >= (k) ; i-- )
namespace FastIO
{
// ------------------------------
// #define DISABLE_MMAP
// ------------------------------
#if ( defined(LOCAL) || defined(_WIN32) ) && !defined(DISABLE_MMAP)
#define DISABLE_MMAP
#endif
#ifdef LOCAL
inline char gc() { return getchar(); }
inline void pc(char c) { putchar(c); }
#else
#ifdef DISABLE_MMAP
inline constexpr int _READ_SIZE = 1 << 18;
inline static char _read_buffer[_READ_SIZE], *_read_ptr = nullptr, *_read_ptr_end = nullptr;
inline char gc()
{
if ( __builtin_expect(_read_ptr == _read_ptr_end, false) )
{
_read_ptr = _read_buffer, _read_ptr_end = _read_buffer + fread(_read_buffer, 1, _READ_SIZE, stdin);
if ( __builtin_expect(_read_ptr == _read_ptr_end, false) ) return EOF;
}
return *_read_ptr++;
}
#else
#include<sys/mman.h>
inline static const char *_read_ptr = (const char *)mmap(nullptr, 0x7fffffff, 1, 2, 0, 0);
inline char gc() { return *_read_ptr++; }
#endif
inline constexpr int _WRITE_SIZE = 1 << 18;
inline static char _write_buffer[_WRITE_SIZE], *_write_ptr = _write_buffer;
inline void pc(char c)
{
*_write_ptr++ = c;
if ( __builtin_expect(_write_buffer + _WRITE_SIZE == _write_ptr, false) )
fwrite(_write_buffer, 1, _write_ptr - _write_buffer, stdout), _write_ptr = _write_buffer;
}
inline struct _auto_flush
{
inline ~_auto_flush() { fwrite(_write_buffer, 1, _write_ptr - _write_buffer, stdout); }
} _auto_flush;
#endif
template < class T > inline constexpr bool _is_signed = numeric_limits < T >::is_signed;
template < class T > inline constexpr bool _is_unsigned = numeric_limits < T >::is_integer && !_is_signed < T >;
#if __SIZEOF_LONG__ == 64
template <> inline constexpr bool _is_signed < __int128 > = true;
template <> inline constexpr bool _is_unsigned < __uint128_t > = true;
#endif
inline void read(char &c) { do c = gc(); while ( !isgraph(c) ); }
inline void read_cstr(char *s)
{
char c = gc(); while ( !isgraph(c) ) c = gc();
while ( isgraph(c) ) *s++ = c, c = gc(); *s = 0;
}
inline void read(string &s)
{
char c = gc(); s.clear(); while ( !isgraph(c) ) c = gc();
while ( isgraph(c) ) s.push_back(c), c = gc();
}
template < class T, enable_if_t < _is_signed < T >, int > = 0 >
inline void read(T &x)
{
char c = gc(); bool f = true; x = 0;
while ( !isdigit(c) ) { if ( c == 45 ) f = false; c = gc(); }
if ( f ) while ( isdigit(c) ) x = x * 10 + ( c & 15 ), c = gc();
else while ( isdigit(c) ) x = x * 10 - ( c & 15 ), c = gc();
}
template < class T, enable_if_t < _is_unsigned < T >, int > = 0 >
inline void read(T &x)
{
char c = gc(); while ( !isdigit(c) ) c = gc();
x = 0; while ( isdigit(c) ) x = x * 10 + ( c & 15 ), c = gc();
}
inline void write(char c) { pc(c); }
inline void write_cstr(const char *s) { while ( *s ) pc(*s++); }
inline void write(const string &s) { for ( char c : s ) pc(c); }
template < class T, enable_if_t < _is_signed < T >, int > = 0 >
inline void write(T x)
{
char buffer[numeric_limits < T >::digits10 + 1]; int digits = 0;
if ( x >= 0 ) do buffer[digits++] = ( x % 10 ) | 48, x /= 10; while ( x );
else { pc(45); do buffer[digits++] = -( x % 10 ) | 48, x /= 10; while ( x ); }
while ( digits ) pc(buffer[--digits]);
}
template < class T, enable_if_t < _is_unsigned < T >, int > = 0 >
inline void write(T x)
{
char buffer[numeric_limits < T >::digits10]; int digits = 0;
do buffer[digits++] = ( x % 10 ) | 48, x /= 10; while ( x );
while ( digits ) pc(buffer[--digits]);
}
template < int N > struct _tuple_io_helper
{
template < class ...T > static inline void _read(tuple < T... > &x) { _tuple_io_helper < N - 1 >::_read(x), read(get<N - 1>(x)); }
template < class ...T > static inline void _write(const tuple < T... > &x) { _tuple_io_helper < N - 1 >::_write(x), pc(32), write(get<N - 1>(x)); }
};
template <> struct _tuple_io_helper < 1 >
{
template < class ...T > static inline void _read(tuple < T... > &x) { read(get<0>(x)); }
template < class ...T > static inline void _write(const tuple < T... > &x) { write(get<0>(x)); }
};
template < class ...T > inline void read(tuple < T... > &x) { _tuple_io_helper < sizeof...(T) >::_read(x); }
template < class ...T > inline void write(const tuple < T... > &x) { _tuple_io_helper < sizeof...(T) >::_write(x); }
template < class T1, class T2 > inline void read(pair < T1, T2 > &x) { read(x.first), read(x.second); }
template < class T1, class T2 > inline void write(const pair < T1, T2 > &x) { write(x.first), pc(32), write(x.second); }
template < class T1, class ...T2 > inline void read(T1 &x, T2 &...y) { read(x), read(y...); }
template < class ...T > inline void read_cstr(char *x, T *...y) { read_cstr(x), read_cstr(y...); }
template < class T1, class ...T2 > inline void write(const T1 &x, const T2 &...y) { write(x), write(y...); }
template < class ...T > inline void write_cstr(const char *x, const T *...y) { write_cstr(x), write_cstr(y...); }
template < class T > inline void print(const T &x) { write(x); }
inline void print_cstr(const char *x) { write_cstr(x); }
template < class T1, class ...T2 > inline void print(const T1 &x, const T2 &...y) { write(x), pc(32), print(y...); }
template < class ...T > inline void print_cstr(const char *x, const T *...y) { write_cstr(x), pc(32), print_cstr(y...); }
inline void println() { pc(10); } inline void println_cstr() { pc(10); }
template < class ...T > inline void println(const T &...x) { print(x...), pc(10); }
template < class ...T > inline void println_cstr(const T *...x) { print_cstr(x...), pc(10); }
} using FastIO::read, FastIO::read_cstr, FastIO::write, FastIO::write_cstr, FastIO::println, FastIO::println_cstr;
template < int P_ > class Modint
{
using MI = Modint;
inline Modint(int x, int) : v(x) {}
inline static int add(int x) { return x < P ? x : x - P; }
inline static int sub(int x) { return x >= 0 ? x : x + P; }
public:
static constexpr int P = P_; int v;
inline Modint() : v(0) {}
inline Modint(const MI &x) : v(x.v) {}
template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 >
inline Modint(T x) : v(sub(x % P)) {}
template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 >
explicit inline operator T()const { return v; }
inline friend bool operator==(const MI &x, const MI &y) { return x.v == y.v; }
inline friend bool operator!=(const MI &x, const MI &y) { return x.v != y.v; }
inline MI &operator=(const MI &x) { v = x.v; return *this; }
inline MI &operator++() { v < P - 1 ? v++ : v = 0; return *this; }
inline MI operator++(int) { MI x = *this; v < P - 1 ? v++ : v = 0; return x; }
inline MI &operator--() { v ? v-- : v = P - 1; return *this; }
inline MI operator--(int) { MI x = *this; v ? v-- : v = P - 1; return x; }
inline MI operator-()const { return MI(v ? P - v : 0, 0); }
inline friend MI operator+(const MI &x, const MI &y) { return MI(add(x.v + y.v), 0); }
inline friend MI operator-(const MI &x, const MI &y) { return MI(sub(x.v - y.v), 0); }
inline friend MI operator*(const MI &x, const MI &y) { return MI((ll)x.v * y.v % P, 0); }
inline friend MI operator/(const MI &x, const MI &y) { return x * y.inv(); }
inline MI &operator+=(const MI &x) { v = add(v + x.v); return *this; }
inline MI &operator-=(const MI &x) { v = sub(v - x.v); return *this; }
inline MI &operator*=(const MI &x) { v = (ll)v * x.v % P; return *this; }
inline MI &operator/=(const MI &x) { return *this *= x.inv(); }
template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 >
inline MI qpow(T y)const
{ MI x(*this), z(1, 0); while ( y ) { if ( y & 1 ) z *= x; if ( y >>= 1 ) x *= x; } return z; }
template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 >
inline friend MI qpow(const MI &x, T y) { return x.qpow(y); }
inline MI inv()const { assert(v); return qpow(P - 2); }
inline friend MI inv(const MI &x) { return x.inv(); }
inline friend istream &operator>>(istream &is, MI &x) { return is >> x.v; }
inline friend ostream &operator<<(ostream &os, const MI &x) { return os << x.v; }
}; using MI = Modint < 1000000007 >;
template < ll P_ > class Modlong
{
using MI = Modlong;
inline Modlong(ll x, int) : v(x) {}
inline static ll add(ll x) { return x < P ? x : x - P; }
inline static ll sub(ll x) { return x >= 0 ? x : x + P; }
inline static ll mul(ll x, ll y) { return sub(add(x * y - (ll)( 1.l * x * y / P ) * P)); }
public:
static constexpr ll P = P_; ll v;
inline Modlong() : v(0) {}
inline Modlong(const MI &x) : v(x.v) {}
template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 >
inline Modlong(T x) : v(sub(x % P)) {}
template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 >
explicit inline operator T()const { return v; }
inline friend bool operator==(const MI &x, const MI &y) { return x.v == y.v; }
inline friend bool operator!=(const MI &x, const MI &y) { return x.v != y.v; }
inline MI &operator=(const MI &x) { v = x.v; return *this; }
inline MI &operator++() { v < P - 1 ? v++ : v = 0; return *this; }
inline MI operator++(int) { MI x = *this; v < P - 1 ? v++ : v = 0; return x; }
inline MI &operator--() { v ? v-- : v = P - 1; return *this; }
inline MI operator--(int) { MI x = *this; v ? v-- : v = P - 1; return x; }
inline MI operator-()const { return MI(v ? P - v : 0, 0); }
inline friend MI operator+(const MI &x, const MI &y) { return MI(add(x.v + y.v), 0); }
inline friend MI operator-(const MI &x, const MI &y) { return MI(sub(x.v - y.v), 0); }
inline friend MI operator*(const MI &x, const MI &y) { return MI(mul(x.v, y.v), 0); }
inline friend MI operator/(const MI &x, const MI &y) { return x * y.inv(); }
inline MI &operator+=(const MI &x) { v = add(v + x.v); return *this; }
inline MI &operator-=(const MI &x) { v = sub(v - x.v); return *this; }
inline MI &operator*=(const MI &x) { v = mul(v, x.v); return *this; }
inline MI &operator/=(const MI &x) { return *this *= x.inv(); }
template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 >
inline MI qpow(T y)const
{ MI x(*this), z(1, 0); while ( y ) { if ( y & 1 ) z *= x; if ( y >>= 1 ) x *= x; } return z; }
template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 >
inline friend MI qpow(const MI &x, T y) { return x.qpow(y); }
inline MI inv()const { assert(v); return qpow(P - 2); }
inline friend MI inv(const MI &x) { return x.inv(); }
inline friend istream &operator>>(istream &is, MI &x) { return is >> x.v; }
inline friend ostream &operator<<(ostream &os, const MI &x) { return os << x.v; }
}; using MI_ = Modlong < 1145141919810000037 >;
constexpr int N = 1000018;
int n, a[300009]; MI_ pw[1000029], s[300009], nw; MI dp[300009];
struct H
{
constexpr static int N = 1 << 24;
struct { ll u; vector < int > v; int nxt; } e[300009]; int hd[N], cnt;
inline int hsh(ll x)const { return x & ( N - 1 ); }
inline auto operator[](ll x)const { for ( int i = hd[hsh(x)] ; i ; i = e[i].nxt ) if ( e[i].u == x ) return e[i].v; return e[0].v; }
inline auto &operator[](ll x) { int &h = hd[hsh(x)]; for ( int i = h ; i ; i = e[i].nxt ) if ( e[i].u == x ) return e[i].v; return e[++cnt].u = x, e[cnt].nxt = h, h = cnt, e[cnt].v; }
} pos;
namespace ST
{
int f[19][300009];
inline int cmp(int x, int y) { return a[x] > a[y] ? x : y; }
inline void init()
{
iota(f[0] + 1, f[0] + n + 1, 1);
For(i, 1, 18) For(j, 1, n + 1 - ( 1 << i )) f[i][j] = cmp(f[i - 1][j], f[i - 1][j + ( 1 << ( i - 1 ) )]);
}
inline int qry(int l, int r) { int t = __lg(r - l + 1); return cmp(f[t][l], f[t][r + 1 - ( 1 << t )]); }
}
inline void slv(int l, int r)
{
if ( l > r ) return;
int md = ST::qry(l, r);
slv(l, md - 1);
For(i, a[md], a[md] + 18)
if ( md - l <= r - md ) For(j, l, md)
{
nw = s[j - 1] + pw[i];
if ( pos[nw.v].empty() ) continue;
auto it = lower_bound(pos[nw.v].begin(), pos[nw.v].end(), md);
if ( it != pos[nw.v].end() && *it <= r ) dp[*it] += dp[j - 1];
}
else For(j, md, r)
{
nw = s[j] - pw[i];
if ( pos[nw.v].empty() ) continue;
auto it = lower_bound(pos[nw.v].begin(), pos[nw.v].end(), md);
if ( it != pos[nw.v].begin() && *--it >= l - 1 ) dp[j] += dp[*it];
}
slv(md + 1, r);
}
int main()
{
read(n), *pw = 1, pos[0].push_back(0), *dp = 1;
For(i, 1, N) pw[i] = pw[i - 1] * 2;
For(i, 1, n) read(a[i]), s[i] = s[i - 1] + pw[a[i]], pos[s[i].v].push_back(i);
ST::init(), slv(1, n);
return println(dp[n].v), 0;
}
// 想上GM捏 想上GM捏 想上GM捏 想上GM捏 想上GM捏
// 伊娜可爱捏 伊娜贴贴捏
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 17ms
memory: 26724kb
input:
5 2 0 0 1 1
output:
6
result:
ok 1 number(s): "6"
Test #2:
score: 0
Accepted
time: 7ms
memory: 26724kb
input:
1 0
output:
1
result:
ok 1 number(s): "1"
Test #3:
score: 0
Accepted
time: 11ms
memory: 26800kb
input:
2 1 1
output:
2
result:
ok 1 number(s): "2"
Test #4:
score: 0
Accepted
time: 19ms
memory: 26848kb
input:
3 2 1 1
output:
3
result:
ok 1 number(s): "3"
Test #5:
score: 0
Accepted
time: 11ms
memory: 26712kb
input:
4 3 2 2 3
output:
4
result:
ok 1 number(s): "4"
Test #6:
score: 0
Accepted
time: 15ms
memory: 26876kb
input:
5 3 4 4 2 4
output:
2
result:
ok 1 number(s): "2"
Test #7:
score: 0
Accepted
time: 15ms
memory: 26884kb
input:
7 3 4 3 5 6 3 4
output:
6
result:
ok 1 number(s): "6"
Test #8:
score: 0
Accepted
time: 15ms
memory: 27052kb
input:
10 8 6 5 6 7 8 6 8 9 9
output:
4
result:
ok 1 number(s): "4"
Test #9:
score: 0
Accepted
time: 11ms
memory: 27004kb
input:
96 5 1 0 2 5 5 2 4 2 4 4 2 3 4 0 2 1 4 3 1 2 0 2 2 3 2 4 5 3 5 2 0 2 2 5 3 0 4 5 3 5 4 4 3 1 2 0 5 4 5 0 2 3 2 4 0 0 4 2 0 2 5 3 3 1 5 5 1 1 1 0 5 0 3 0 2 1 1 0 5 0 3 3 4 4 5 3 0 2 2 0 5 4 5 0 5
output:
11332014
result:
ok 1 number(s): "11332014"
Test #10:
score: 0
Accepted
time: 16ms
memory: 27264kb
input:
480 2 0 4 4 1 0 0 3 1 1 4 2 5 5 4 2 1 2 4 4 1 3 4 3 0 5 2 0 2 5 1 0 5 0 0 5 5 0 2 5 2 2 3 1 4 3 5 4 5 2 4 4 4 4 1 4 0 3 4 3 4 1 0 4 3 4 5 4 3 5 0 2 2 0 1 5 4 4 2 0 3 3 3 4 3 0 5 5 3 1 5 1 0 1 0 4 3 0 5 1 4 1 4 3 0 1 3 5 0 3 3 1 0 4 1 1 2 0 1 2 0 3 5 2 0 5 5 5 5 3 5 1 0 2 5 2 2 0 2 0 2 3 5 1 2 1 5 4 ...
output:
506782981
result:
ok 1 number(s): "506782981"
Test #11:
score: 0
Accepted
time: 12ms
memory: 29044kb
input:
2400 0 2 2 0 5 4 3 2 3 2 5 4 5 4 4 5 2 2 4 2 2 0 1 0 5 0 4 4 0 0 5 0 4 0 1 3 4 5 0 3 1 0 4 0 2 5 0 3 3 3 3 1 0 5 5 3 1 3 5 2 4 0 5 0 4 5 4 2 2 1 5 2 2 4 1 0 5 1 5 0 1 2 0 0 3 5 4 0 0 1 1 1 4 2 0 5 1 3 3 5 0 4 4 1 5 5 3 4 4 4 0 2 4 0 5 1 3 1 5 0 5 5 1 3 0 3 1 2 0 1 1 3 5 2 3 4 0 3 0 5 4 0 4 3 5 0 5 2...
output:
586570528
result:
ok 1 number(s): "586570528"
Test #12:
score: 0
Accepted
time: 12ms
memory: 35088kb
input:
12000 2 2 1 2 0 2 5 3 2 0 1 3 2 5 4 0 0 5 3 2 0 2 3 4 3 2 1 4 3 0 3 5 4 1 0 2 4 1 3 2 3 5 0 3 0 0 4 0 4 5 1 0 4 1 1 1 5 4 3 0 3 5 4 5 2 5 0 1 2 3 5 5 2 5 4 2 0 4 4 3 0 0 2 5 0 3 4 2 5 4 2 1 4 5 1 1 2 3 0 3 3 3 3 4 0 5 3 4 0 3 0 2 0 0 2 0 3 4 2 2 0 1 0 5 3 0 2 0 2 2 1 0 5 3 5 4 5 5 0 4 0 4 1 4 4 3 2 ...
output:
201653965
result:
ok 1 number(s): "201653965"
Test #13:
score: -100
Runtime Error
input:
60000 2 5 0 3 2 3 5 3 5 5 4 1 1 5 3 0 1 1 2 5 5 5 0 3 2 0 3 2 3 3 0 0 1 4 3 1 4 2 3 3 0 5 1 0 1 1 5 5 4 0 5 4 1 3 1 3 5 3 2 4 4 4 5 4 3 2 3 2 4 5 2 0 4 5 1 2 0 4 0 5 1 3 4 1 2 4 1 1 3 3 0 1 1 3 0 0 2 3 3 2 1 4 1 2 4 3 3 5 2 5 3 4 3 0 2 1 1 1 5 1 2 4 2 3 1 2 1 0 2 0 1 1 5 5 3 4 2 5 2 4 5 3 0 5 1 4 2 ...