QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#443226#8527. Power Divisionsucup-team896#RE 19ms35088kbC++2313.4kb2024-06-15 14:50:212024-06-15 14:50:22

Judging History

你现在查看的是最新测评结果

  • [2024-06-15 14:50:22]
  • 评测
  • 测评结果:RE
  • 用时:19ms
  • 内存:35088kb
  • [2024-06-15 14:50:21]
  • 提交

answer

/*  _              _     _                                             _       __      __      __   
   / \     _   _  | |_  | |__     ___    _ __   _    ___   _ __ ___   | | __  / /_    / /_    / /_  
  / _ \   | | | | | __| | '_ \   / _ \  | '__| (_)  / __| | '_ ` _ \  | |/ / | '_ \  | '_ \  | '_ \ 
 / ___ \  | |_| | | |_  | | | | | (_) | | |     _  | (__  | | | | | | |   <  | (_) | | (_) | | (_) |
/_/   \_\  \__,_|  \__| |_| |_|  \___/  |_|    (_)  \___| |_| |_| |_| |_|\_\  \___/   \___/   \___/ 
[Created Time:       2024-06-15 14:23:03]
[Last Modified Time: 2024-06-15 14:49:45] */
#pragma GCC optimize("Ofast", "unroll-loops")
#include<bits/stdc++.h>
#ifdef LOCAL
#include"debug.h"
#else
#define D(...) ((void)0)
#endif
using namespace std; using ll = long long;
#define For(i, j, k) for ( int i = (j) ; i <= (k) ; i++ )
#define Fol(i, j, k) for ( int i = (j) ; i >= (k) ; i-- )
namespace FastIO
{
// ------------------------------
// #define DISABLE_MMAP
// ------------------------------
#if ( defined(LOCAL) || defined(_WIN32) ) && !defined(DISABLE_MMAP)
#define DISABLE_MMAP
#endif
#ifdef LOCAL
	inline char gc() { return getchar(); }
	inline void pc(char c) { putchar(c); }
#else
#ifdef DISABLE_MMAP
	inline constexpr int _READ_SIZE = 1 << 18;
	inline static char _read_buffer[_READ_SIZE], *_read_ptr = nullptr, *_read_ptr_end = nullptr;
	inline char gc()
	{
		if ( __builtin_expect(_read_ptr == _read_ptr_end, false) )
		{
			_read_ptr = _read_buffer, _read_ptr_end = _read_buffer + fread(_read_buffer, 1, _READ_SIZE, stdin);
			if ( __builtin_expect(_read_ptr == _read_ptr_end, false) ) return EOF;
		}
		return *_read_ptr++;
	}
#else
#include<sys/mman.h>
	inline static const char *_read_ptr = (const char *)mmap(nullptr, 0x7fffffff, 1, 2, 0, 0);
	inline char gc() { return *_read_ptr++; }
#endif
	inline constexpr int _WRITE_SIZE = 1 << 18;
	inline static char _write_buffer[_WRITE_SIZE], *_write_ptr = _write_buffer;
	inline void pc(char c)
	{
		*_write_ptr++ = c;
		if ( __builtin_expect(_write_buffer + _WRITE_SIZE == _write_ptr, false) )
			fwrite(_write_buffer, 1, _write_ptr - _write_buffer, stdout), _write_ptr = _write_buffer;
	}
	inline struct _auto_flush
	{
		inline ~_auto_flush() { fwrite(_write_buffer, 1, _write_ptr - _write_buffer, stdout); }
	}	_auto_flush;
#endif
	template < class T > inline constexpr bool _is_signed = numeric_limits < T >::is_signed;
	template < class T > inline constexpr bool _is_unsigned = numeric_limits < T >::is_integer && !_is_signed < T >;
#if __SIZEOF_LONG__ == 64
	template <> inline constexpr bool _is_signed < __int128 > = true;
	template <> inline constexpr bool _is_unsigned < __uint128_t > = true;
#endif
	inline void read(char &c) { do c = gc(); while ( !isgraph(c) ); }
	inline void read_cstr(char *s)
	{
		char c = gc(); while ( !isgraph(c) ) c = gc();
		while ( isgraph(c) ) *s++ = c, c = gc(); *s = 0;
	}
	inline void read(string &s)
	{
		char c = gc(); s.clear(); while ( !isgraph(c) ) c = gc();
		while ( isgraph(c) ) s.push_back(c), c = gc();
	}
	template < class T, enable_if_t < _is_signed < T >, int > = 0 >
	inline void read(T &x)
	{
		char c = gc(); bool f = true; x = 0;
		while ( !isdigit(c) ) { if ( c == 45 ) f = false; c = gc(); }
		if ( f ) while ( isdigit(c) ) x = x * 10 + ( c & 15 ), c = gc();
		else     while ( isdigit(c) ) x = x * 10 - ( c & 15 ), c = gc();
	}
	template < class T, enable_if_t < _is_unsigned < T >, int > = 0 >
	inline void read(T &x)
	{
		char c = gc(); while ( !isdigit(c) ) c = gc();
		x = 0; while ( isdigit(c) ) x = x * 10 + ( c & 15 ), c = gc();
	}
	inline void write(char c) { pc(c); }
	inline void write_cstr(const char *s) { while ( *s ) pc(*s++); }
	inline void write(const string &s) { for ( char c : s ) pc(c); }
	template < class T, enable_if_t < _is_signed < T >, int > = 0 >
	inline void write(T x)
	{
		char buffer[numeric_limits < T >::digits10 + 1]; int digits = 0;
		if ( x >= 0 )  do buffer[digits++] =  ( x % 10 ) | 48, x /= 10; while ( x );
		else { pc(45); do buffer[digits++] = -( x % 10 ) | 48, x /= 10; while ( x ); }
		while ( digits ) pc(buffer[--digits]);
	}
	template < class T, enable_if_t < _is_unsigned < T >, int > = 0 >
	inline void write(T x)
	{
		char buffer[numeric_limits < T >::digits10]; int digits = 0;
		do buffer[digits++] = ( x % 10 ) | 48, x /= 10; while ( x );
		while ( digits ) pc(buffer[--digits]);
	}
	template < int N > struct _tuple_io_helper
	{
		template < class ...T > static inline void _read(tuple < T... > &x) { _tuple_io_helper < N - 1 >::_read(x), read(get<N - 1>(x)); }
		template < class ...T > static inline void _write(const tuple < T... > &x) { _tuple_io_helper < N - 1 >::_write(x), pc(32), write(get<N - 1>(x)); }
	};
	template <> struct _tuple_io_helper < 1 >
	{
		template < class ...T > static inline void _read(tuple < T... > &x) { read(get<0>(x)); }
		template < class ...T > static inline void _write(const tuple < T... > &x) { write(get<0>(x)); }
	};
	template < class ...T > inline void read(tuple < T... > &x) { _tuple_io_helper < sizeof...(T) >::_read(x); }
	template < class ...T > inline void write(const tuple < T... > &x) { _tuple_io_helper < sizeof...(T) >::_write(x); }
	template < class T1, class T2 > inline void read(pair < T1, T2 > &x) { read(x.first), read(x.second); }
	template < class T1, class T2 > inline void write(const pair < T1, T2 > &x) { write(x.first), pc(32), write(x.second); }
	template < class T1, class ...T2 > inline void read(T1 &x, T2 &...y) { read(x), read(y...); }
	template < class ...T > inline void read_cstr(char *x, T *...y) { read_cstr(x), read_cstr(y...); }
	template < class T1, class ...T2 > inline void write(const T1 &x, const T2 &...y) { write(x), write(y...); }
	template < class ...T > inline void write_cstr(const char *x, const T *...y) { write_cstr(x), write_cstr(y...); }
	template < class T > inline void print(const T &x) { write(x); }
	inline void print_cstr(const char *x) { write_cstr(x); }
	template < class T1, class ...T2 > inline void print(const T1 &x, const T2 &...y) { write(x), pc(32), print(y...); }
	template < class ...T > inline void print_cstr(const char *x, const T *...y) { write_cstr(x), pc(32), print_cstr(y...); }
	inline void println() { pc(10); } inline void println_cstr() { pc(10); }
	template < class ...T > inline void println(const T &...x) { print(x...), pc(10); }
	template < class ...T > inline void println_cstr(const T *...x) { print_cstr(x...), pc(10); }
}	using FastIO::read, FastIO::read_cstr, FastIO::write, FastIO::write_cstr, FastIO::println, FastIO::println_cstr;
template < int P_ > class Modint
{
	using MI = Modint;
	inline Modint(int x, int) : v(x) {}
	inline static int add(int x) { return x < P ? x : x - P; }
	inline static int sub(int x) { return x >= 0 ? x : x + P; }
public:
	static constexpr int P = P_; int v;
	inline Modint() : v(0) {}
	inline Modint(const MI &x) : v(x.v) {}
	template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 >
	inline Modint(T x) : v(sub(x % P)) {}
	template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 >
	explicit inline operator T()const { return v; }
	inline friend bool operator==(const MI &x, const MI &y) { return x.v == y.v; }
	inline friend bool operator!=(const MI &x, const MI &y) { return x.v != y.v; }
	inline MI &operator=(const MI &x) { v = x.v; return *this; }
	inline MI &operator++() { v < P - 1 ? v++ : v = 0; return *this; }
	inline MI operator++(int) { MI x = *this; v < P - 1 ? v++ : v = 0; return x; }
	inline MI &operator--() { v ? v-- : v = P - 1; return *this; }
	inline MI operator--(int) { MI x = *this; v ? v-- : v = P - 1; return x; }
	inline MI operator-()const { return MI(v ? P - v : 0, 0); }
	inline friend MI operator+(const MI &x, const MI &y) { return MI(add(x.v + y.v), 0); }
	inline friend MI operator-(const MI &x, const MI &y) { return MI(sub(x.v - y.v), 0); }
	inline friend MI operator*(const MI &x, const MI &y) { return MI((ll)x.v * y.v % P, 0); }
	inline friend MI operator/(const MI &x, const MI &y) { return x * y.inv(); }
	inline MI &operator+=(const MI &x) { v = add(v + x.v); return *this; }
	inline MI &operator-=(const MI &x) { v = sub(v - x.v); return *this; }
	inline MI &operator*=(const MI &x) { v = (ll)v * x.v % P; return *this; }
	inline MI &operator/=(const MI &x) { return *this *= x.inv(); }
	template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 >
	inline MI qpow(T y)const
	{ MI x(*this), z(1, 0); while ( y ) { if ( y & 1 ) z *= x; if ( y >>= 1 ) x *= x; } return z; }
	template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 >
	inline friend MI qpow(const MI &x, T y) { return x.qpow(y); }
	inline MI inv()const { assert(v); return qpow(P - 2); }
	inline friend MI inv(const MI &x) { return x.inv(); }
	inline friend istream &operator>>(istream &is, MI &x) { return is >> x.v; }
	inline friend ostream &operator<<(ostream &os, const MI &x) { return os << x.v; }
};	using MI = Modint < 1000000007 >;
template < ll P_ > class Modlong
{
	using MI = Modlong;
	inline Modlong(ll x, int) : v(x) {}
	inline static ll add(ll x) { return x < P ? x : x - P; }
	inline static ll sub(ll x) { return x >= 0 ? x : x + P; }
	inline static ll mul(ll x, ll y) { return sub(add(x * y - (ll)( 1.l * x * y / P ) * P)); }
public:
	static constexpr ll P = P_; ll v;
	inline Modlong() : v(0) {}
	inline Modlong(const MI &x) : v(x.v) {}
	template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 >
	inline Modlong(T x) : v(sub(x % P)) {}
	template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 >
	explicit inline operator T()const { return v; }
	inline friend bool operator==(const MI &x, const MI &y) { return x.v == y.v; }
	inline friend bool operator!=(const MI &x, const MI &y) { return x.v != y.v; }
	inline MI &operator=(const MI &x) { v = x.v; return *this; }
	inline MI &operator++() { v < P - 1 ? v++ : v = 0; return *this; }
	inline MI operator++(int) { MI x = *this; v < P - 1 ? v++ : v = 0; return x; }
	inline MI &operator--() { v ? v-- : v = P - 1; return *this; }
	inline MI operator--(int) { MI x = *this; v ? v-- : v = P - 1; return x; }
	inline MI operator-()const { return MI(v ? P - v : 0, 0); }
	inline friend MI operator+(const MI &x, const MI &y) { return MI(add(x.v + y.v), 0); }
	inline friend MI operator-(const MI &x, const MI &y) { return MI(sub(x.v - y.v), 0); }
	inline friend MI operator*(const MI &x, const MI &y) { return MI(mul(x.v, y.v), 0); }
	inline friend MI operator/(const MI &x, const MI &y) { return x * y.inv(); }
	inline MI &operator+=(const MI &x) { v = add(v + x.v); return *this; }
	inline MI &operator-=(const MI &x) { v = sub(v - x.v); return *this; }
	inline MI &operator*=(const MI &x) { v = mul(v, x.v); return *this; }
	inline MI &operator/=(const MI &x) { return *this *= x.inv(); }
	template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 >
	inline MI qpow(T y)const
	{ MI x(*this), z(1, 0); while ( y ) { if ( y & 1 ) z *= x; if ( y >>= 1 ) x *= x; } return z; }
	template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 >
	inline friend MI qpow(const MI &x, T y) { return x.qpow(y); }
	inline MI inv()const { assert(v); return qpow(P - 2); }
	inline friend MI inv(const MI &x) { return x.inv(); }
	inline friend istream &operator>>(istream &is, MI &x) { return is >> x.v; }
	inline friend ostream &operator<<(ostream &os, const MI &x) { return os << x.v; }
};	using MI_ = Modlong < 1145141919810000037 >;
constexpr int N = 1000018;
int n, a[300009]; MI_ pw[1000029], s[300009], nw; MI dp[300009];
struct H
{
	constexpr static int N = 1 << 24;
	struct { ll u; vector < int > v; int nxt; } e[300009]; int hd[N], cnt;
	inline int hsh(ll x)const { return x & ( N - 1 ); }
	inline auto operator[](ll x)const { for ( int i = hd[hsh(x)] ; i ; i = e[i].nxt ) if ( e[i].u == x ) return e[i].v; return e[0].v; }
	inline auto &operator[](ll x) { int &h = hd[hsh(x)]; for ( int i = h ; i ; i = e[i].nxt ) if ( e[i].u == x ) return e[i].v; return e[++cnt].u = x, e[cnt].nxt = h, h = cnt, e[cnt].v; }
}	pos;
namespace ST
{
	int f[19][300009];
	inline int cmp(int x, int y) { return a[x] > a[y] ? x : y; }
	inline void init()
	{
		iota(f[0] + 1, f[0] + n + 1, 1);
		For(i, 1, 18) For(j, 1, n + 1 - ( 1 << i )) f[i][j] = cmp(f[i - 1][j], f[i - 1][j + ( 1 << ( i - 1 ) )]);
	}
	inline int qry(int l, int r) { int t = __lg(r - l + 1); return cmp(f[t][l], f[t][r + 1 - ( 1 << t )]); }
}
inline void slv(int l, int r)
{
	if ( l > r ) return;
	int md = ST::qry(l, r);
	slv(l, md - 1);
	For(i, a[md], a[md] + 18)
		if ( md - l <= r - md ) For(j, l, md)
		{
			nw = s[j - 1] + pw[i];
			if ( pos[nw.v].empty() ) continue;
			auto it = lower_bound(pos[nw.v].begin(), pos[nw.v].end(), md);
			if ( it != pos[nw.v].end() && *it <= r ) dp[*it] += dp[j - 1];
		}
		else For(j, md, r)
		{
			nw = s[j] - pw[i];
			if ( pos[nw.v].empty() ) continue;
			auto it = lower_bound(pos[nw.v].begin(), pos[nw.v].end(), md);
			if ( it != pos[nw.v].begin() && *--it >= l - 1 ) dp[j] += dp[*it];
		}
	slv(md + 1, r);
}
int main()
{
	read(n), *pw = 1, pos[0].push_back(0), *dp = 1;
	For(i, 1, N) pw[i] = pw[i - 1] * 2;
	For(i, 1, n) read(a[i]), s[i] = s[i - 1] + pw[a[i]], pos[s[i].v].push_back(i);
	ST::init(), slv(1, n);
	return println(dp[n].v), 0;
}
// 想上GM捏 想上GM捏 想上GM捏 想上GM捏 想上GM捏
// 伊娜可爱捏 伊娜贴贴捏

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 17ms
memory: 26724kb

input:

5
2 0 0 1 1

output:

6

result:

ok 1 number(s): "6"

Test #2:

score: 0
Accepted
time: 7ms
memory: 26724kb

input:

1
0

output:

1

result:

ok 1 number(s): "1"

Test #3:

score: 0
Accepted
time: 11ms
memory: 26800kb

input:

2
1 1

output:

2

result:

ok 1 number(s): "2"

Test #4:

score: 0
Accepted
time: 19ms
memory: 26848kb

input:

3
2 1 1

output:

3

result:

ok 1 number(s): "3"

Test #5:

score: 0
Accepted
time: 11ms
memory: 26712kb

input:

4
3 2 2 3

output:

4

result:

ok 1 number(s): "4"

Test #6:

score: 0
Accepted
time: 15ms
memory: 26876kb

input:

5
3 4 4 2 4

output:

2

result:

ok 1 number(s): "2"

Test #7:

score: 0
Accepted
time: 15ms
memory: 26884kb

input:

7
3 4 3 5 6 3 4

output:

6

result:

ok 1 number(s): "6"

Test #8:

score: 0
Accepted
time: 15ms
memory: 27052kb

input:

10
8 6 5 6 7 8 6 8 9 9

output:

4

result:

ok 1 number(s): "4"

Test #9:

score: 0
Accepted
time: 11ms
memory: 27004kb

input:

96
5 1 0 2 5 5 2 4 2 4 4 2 3 4 0 2 1 4 3 1 2 0 2 2 3 2 4 5 3 5 2 0 2 2 5 3 0 4 5 3 5 4 4 3 1 2 0 5 4 5 0 2 3 2 4 0 0 4 2 0 2 5 3 3 1 5 5 1 1 1 0 5 0 3 0 2 1 1 0 5 0 3 3 4 4 5 3 0 2 2 0 5 4 5 0 5

output:

11332014

result:

ok 1 number(s): "11332014"

Test #10:

score: 0
Accepted
time: 16ms
memory: 27264kb

input:

480
2 0 4 4 1 0 0 3 1 1 4 2 5 5 4 2 1 2 4 4 1 3 4 3 0 5 2 0 2 5 1 0 5 0 0 5 5 0 2 5 2 2 3 1 4 3 5 4 5 2 4 4 4 4 1 4 0 3 4 3 4 1 0 4 3 4 5 4 3 5 0 2 2 0 1 5 4 4 2 0 3 3 3 4 3 0 5 5 3 1 5 1 0 1 0 4 3 0 5 1 4 1 4 3 0 1 3 5 0 3 3 1 0 4 1 1 2 0 1 2 0 3 5 2 0 5 5 5 5 3 5 1 0 2 5 2 2 0 2 0 2 3 5 1 2 1 5 4 ...

output:

506782981

result:

ok 1 number(s): "506782981"

Test #11:

score: 0
Accepted
time: 12ms
memory: 29044kb

input:

2400
0 2 2 0 5 4 3 2 3 2 5 4 5 4 4 5 2 2 4 2 2 0 1 0 5 0 4 4 0 0 5 0 4 0 1 3 4 5 0 3 1 0 4 0 2 5 0 3 3 3 3 1 0 5 5 3 1 3 5 2 4 0 5 0 4 5 4 2 2 1 5 2 2 4 1 0 5 1 5 0 1 2 0 0 3 5 4 0 0 1 1 1 4 2 0 5 1 3 3 5 0 4 4 1 5 5 3 4 4 4 0 2 4 0 5 1 3 1 5 0 5 5 1 3 0 3 1 2 0 1 1 3 5 2 3 4 0 3 0 5 4 0 4 3 5 0 5 2...

output:

586570528

result:

ok 1 number(s): "586570528"

Test #12:

score: 0
Accepted
time: 12ms
memory: 35088kb

input:

12000
2 2 1 2 0 2 5 3 2 0 1 3 2 5 4 0 0 5 3 2 0 2 3 4 3 2 1 4 3 0 3 5 4 1 0 2 4 1 3 2 3 5 0 3 0 0 4 0 4 5 1 0 4 1 1 1 5 4 3 0 3 5 4 5 2 5 0 1 2 3 5 5 2 5 4 2 0 4 4 3 0 0 2 5 0 3 4 2 5 4 2 1 4 5 1 1 2 3 0 3 3 3 3 4 0 5 3 4 0 3 0 2 0 0 2 0 3 4 2 2 0 1 0 5 3 0 2 0 2 2 1 0 5 3 5 4 5 5 0 4 0 4 1 4 4 3 2 ...

output:

201653965

result:

ok 1 number(s): "201653965"

Test #13:

score: -100
Runtime Error

input:

60000
2 5 0 3 2 3 5 3 5 5 4 1 1 5 3 0 1 1 2 5 5 5 0 3 2 0 3 2 3 3 0 0 1 4 3 1 4 2 3 3 0 5 1 0 1 1 5 5 4 0 5 4 1 3 1 3 5 3 2 4 4 4 5 4 3 2 3 2 4 5 2 0 4 5 1 2 0 4 0 5 1 3 4 1 2 4 1 1 3 3 0 1 1 3 0 0 2 3 3 2 1 4 1 2 4 3 3 5 2 5 3 4 3 0 2 1 1 1 5 1 2 4 2 3 1 2 1 0 2 0 1 1 5 5 3 4 2 5 2 4 5 3 0 5 1 4 2 ...

output:


result: