QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#438755 | #8782. Schoolgirls | hos_lyric | WA | 99ms | 4036kb | C++14 | 8.1kb | 2024-06-11 04:27:20 | 2024-06-11 04:27:21 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
template <class T> T power(T a, long long e, T m) {
for (T b = 1; ; (a *= a) %= m) {
if (e & 1) (b *= a) %= m;
if (!(e >>= 1)) return b;
}
}
long long gcd(long long a, long long b) {
if (a < 0) a = -a;
if (b < 0) b = -b;
if (a == 0) return b;
if (b == 0) return a;
const int s = __builtin_ctzll(a | b);
a >>= __builtin_ctzll(a);
do {
b >>= __builtin_ctzll(b);
if (a > b) swap(a, b);
b -= a;
} while (b);
return a << s;
}
bool isPrime(long long n) {
if (n <= 1 || n % 2 == 0) return (n == 2);
const int s = __builtin_ctzll(n - 1);
const long long d = (n - 1) >> s;
// http://miller-rabin.appspot.com/
for (const long long base : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
__int128 a = base % n;
if (a == 0) continue;
a = power<__int128>(a, d, n);
if (a == 1 || a == n - 1) continue;
bool ok = false;
for (int i = 0; i < s - 1; ++i) {
(a *= a) %= n;
if (a == n - 1) {
ok = true;
break;
}
}
if (!ok) return false;
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
// Barrett
struct ModInt {
static unsigned M;
static unsigned long long NEG_INV_M;
static void setM(unsigned m) { M = m; NEG_INV_M = -1ULL / M; }
unsigned x;
ModInt() : x(0U) {}
ModInt(unsigned x_) : x(x_ % M) {}
ModInt(unsigned long long x_) : x(x_ % M) {}
ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) {
const unsigned long long y = static_cast<unsigned long long>(x) * a.x;
const unsigned long long q = static_cast<unsigned long long>((static_cast<unsigned __int128>(NEG_INV_M) * y) >> 64);
const unsigned long long r = y - M * q;
x = r - M * (r >= M);
return *this;
}
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
bool operator<(const ModInt &a) const { return (x < a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
unsigned ModInt::M;
unsigned long long ModInt::NEG_INV_M;
// !!!Use ModInt::setM!!!
////////////////////////////////////////////////////////////////////////////////
using Mint = ModInt;
// M: prime
Mint primitiveRoot() {
const unsigned M = Mint::M;
vector<unsigned> es;
{
unsigned m = M - 1;
for (unsigned q = 2; q * q <= m; ++q) if (m % q == 0) {
do { m /= q; } while (m % q == 0);
es.push_back((M - 1) / q);
}
if (m > 1) es.push_back((M - 1) / m);
}
for (unsigned a = 1; a < M; ++a) {
const Mint g = a;
if ([&]() -> bool {
for (const unsigned e : es) if (g.pow(e).x == 1) return false;
return true;
}()) {
return g;
}
}
assert(false);
}
#include <chrono>
#ifdef LOCAL
mt19937_64 rng(58);
#else
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
#endif
constexpr int ITER = 100;
int N, M, Q;
vector<int> A, B, C;
vector<int> R;
vector<vector<int>> U;
int main() {
for (; ~scanf("%d%d%d", &N, &M, &Q); ) {
A.resize(M);
B.resize(M);
C.resize(M);
for (int i = 0; i < M; ++i) {
scanf("%d%d%d", &A[i], &B[i], &C[i]);
--A[i];
--B[i];
--C[i];
}
R.resize(Q);
U.resize(Q);
for (int q = 0; q < Q; ++q) {
scanf("%d", &R[q]);
U[q].resize(R[q]);
for (int r = 0; r < R[q]; ++r) {
scanf("%d", &U[q][r]);
--U[q][r];
}
}
vector<int> ans(Q, 1);
for (int iter = 0; iter < ITER; ++iter) {
int p;
for (; ; ) {
/*
N | p - 1
p = N k + 1
3 <= p < 2^31
*/
p = N * (rng() % ((1LL<<31) / N)) + 1;
if (3 <= p && p < 1LL<<31 && (p - 1) % N == 0 && isPrime(p)) {
break;
}
}
Mint::setM(p);
const Mint g = primitiveRoot();
// cerr<<"p = "<<p<<", g = "<<g<<endl;
const Mint rot = g.pow((p - 1) / N);
vector<Mint> zs(N + M);
zs[0] = 1;
for (int u = 1; u < N; ++u) {
zs[u] = zs[u - 1] * rot;
}
for (int i = 0; i < M; ++i) {
// B - A = C - ?
zs[N + i] = zs[A[i]] + zs[C[i]] - zs[B[i]];
}
for (int q = 0; q < Q; ++q) {
if ([&]() -> bool {
const int n = R[q];
Mint o = 0;
vector<Mint> ws(n);
for (int r = 0; r < n; ++r) o += ws[r] = zs[U[q][r]];
o /= n;
for (int r = 0; r < n; ++r) ws[r] -= o;
o = 0;
sort(ws.begin(), ws.end());
if (ws[0] == ws[N - 1]) return true;
if ((p - 1) % n != 0) return false;
const Mint ro = g.pow((p - 1) / n);
vector<Mint> tar(n);
tar[0] = ws[0];
for (int r = 1; r < n; ++r) tar[r] = tar[r - 1] * ro;
sort(tar.begin(), tar.end());
return (tar == ws);
}()) {
// Yes
} else {
ans[q] = 0;
}
}
}
for (int q = 0; q < Q; ++q) {
puts(ans[q] ? "Yes" : "No");
}
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3676kb
input:
3 6 8 1 2 3 3 1 4 5 4 3 3 1 2 4 5 3 4 5 2 6 4 7 6 5 1 2 3 1 3 2 3 1 1 8 4 2 5 6 7 3 2 1 4 3 6 5 9 3 4 7 9 4 1 3 2 8
output:
Yes Yes Yes No No No Yes No
result:
ok 8 token(s): yes count is 4, no count is 4
Test #2:
score: 0
Accepted
time: 1ms
memory: 3640kb
input:
12 0 1 12 12 11 10 9 8 7 6 5 4 3 2 1
output:
Yes
result:
ok YES
Test #3:
score: -100
Wrong Answer
time: 99ms
memory: 4036kb
input:
3 0 6685 5 1 3 1 2 2 3 1 2 3 5 3 1 3 3 1 4 1 1 1 3 3 3 2 1 5 2 3 2 1 3 6 2 2 3 2 3 1 5 3 1 2 3 2 3 3 3 2 5 3 2 2 2 3 5 2 2 3 3 1 6 3 3 1 3 1 3 6 2 3 3 2 2 1 5 2 2 3 2 2 6 2 3 3 2 1 3 6 2 2 2 2 1 3 3 3 1 2 4 3 2 1 1 5 3 1 3 2 3 4 3 1 1 2 4 2 2 2 3 3 1 2 2 4 2 3 3 1 3 2 2 2 4 1 2 2 3 3 3 3 3 4 1 3 1 3...
output:
No Yes No No Yes No No No No No No No No No No No Yes No No No No No No Yes No Yes No No No No No No No No No No No No Yes No No No No No No No No Yes No No No No No Yes No Yes No No No Yes No No No No No No No No No No No No No No No No No Yes No No No No No No No No No No No No Yes No No No No No ...
result:
wrong answer expected NO, found YES [60th token]