QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#438220 | #8795. Mysterious Sequence | Tobo# | AC ✓ | 11ms | 8092kb | C++20 | 11.6kb | 2024-06-10 14:09:01 | 2024-06-10 14:09:03 |
Judging History
answer
#include <bits/stdc++.h>
// #pragma GCC optimize("Ofast")
// #pragma GCC optimize("unroll-loops")
// #pragma GCC target("avx2")
// #pragma GCC optimize(3, "inline")
// #include <ext/pb_ds/tree_policy.hpp>
// #include <ext/pb_ds/assoc_container.hpp>
// using namespace __gnu_pbds;
// tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> s;
using i64 = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128_t;
using namespace std;
const int N = 2e5 + 5;
// const int B = 3e6;
// const int M = 2e6 + 5;
// const int base = 16;
const i64 base = 13131;
// const int mod = 998244353;
// const int mod = 1e9 + 7;
const i64 mod = 1000000000000000003LL;
// const double pi = acos(-1);
mt19937_64 rnd(chrono::duration_cast<chrono::nanoseconds>(chrono::system_clock::now().time_since_epoch()).count());
template <int mod>
unsigned int down(unsigned int x)
{
return x >= mod ? x - mod : x;
}
template <int mod>
struct Modint
{
unsigned int x;
Modint() = default;
Modint(unsigned int x) : x(x) {}
friend istream &operator>>(istream &in, Modint &a) { return in >> a.x; }
friend ostream &operator<<(ostream &out, Modint a) { return out << a.x; }
friend Modint operator+(Modint a, Modint b) { return down<mod>(a.x + b.x); }
friend Modint operator-(Modint a, Modint b) { return down<mod>(a.x - b.x + mod); }
friend Modint operator*(Modint a, Modint b) { return 1ULL * a.x * b.x % mod; }
friend Modint operator/(Modint a, Modint b) { return a * ~b; }
friend Modint operator^(Modint a, int b)
{
Modint ans = 1;
for (; b; b >>= 1, a *= a)
if (b & 1)
ans *= a;
return ans;
}
friend Modint operator~(Modint a) { return a ^ (mod - 2); }
friend Modint operator-(Modint a) { return down<mod>(mod - a.x); }
friend Modint &operator+=(Modint &a, Modint b) { return a = a + b; }
friend Modint &operator-=(Modint &a, Modint b) { return a = a - b; }
friend Modint &operator*=(Modint &a, Modint b) { return a = a * b; }
friend Modint &operator/=(Modint &a, Modint b) { return a = a / b; }
friend Modint &operator^=(Modint &a, int b) { return a = a ^ b; }
friend Modint &operator++(Modint &a) { return a += 1; }
friend Modint operator++(Modint &a, int)
{
Modint x = a;
a += 1;
return x;
}
friend Modint &operator--(Modint &a) { return a -= 1; }
friend Modint operator--(Modint &a, int)
{
Modint x = a;
a -= 1;
return x;
}
friend bool operator==(Modint a, Modint b) { return a.x == b.x; }
friend bool operator!=(Modint a, Modint b) { return !(a == b); }
};
typedef Modint<998244353> mint;
// typedef Modint<1000000007> mint;
template <typename T>
struct Fenwick
{
int n;
vector<T> a;
Fenwick(int n = 0) { init(n); }
void init(int n)
{
this->n = n;
a.assign(n + 1, T());
}
void add(int x, T v)
{
for (int i = x; i <= n; i += i & -i)
a[i] += v;
}
T sum(int x)
{
auto ans = T();
for (int i = x; i; i -= i & -i)
ans += a[i];
return ans;
}
T rangeSum(int l, int r) { return sum(r) - sum(l - 1); }
int kth(T k)
{
int x = 0;
for (int i = 1 << std::__lg(n); i; i >>= 1)
{
if (x + i <= n && k >= a[x + i])
{
x += i;
k -= a[x];
}
}
return x;
}
};
const int P = 998244353;
using i64 = long long;
using Poly = vector<int>;
/*---------------------------------------------------------------------------*/
#define MUL(a, b) (i64(a) * (b) % P)
#define ADD(a, b) (((a) += (b)) >= P ? (a) -= P : 0) // (a += b) %= P
#define SUB(a, b) (((a) -= (b)) < 0 ? (a) += P : 0) // ((a -= b) += P) %= P
Poly getInv(int L)
{
Poly inv(L);
inv[1] = 1;
for (int i = 2; i < L; i++)
inv[i] = MUL((P - P / i), inv[P % i]);
return inv;
}
int POW(i64 a, int b = P - 2, i64 x = 1)
{
for (; b; b >>= 1, a = a * a % P)
if (b & 1)
x = x * a % P;
return x;
}
auto inv = getInv(N);
namespace NTT
{
const int g = 3;
Poly Omega(int L)
{
int wn = POW(g, P / L);
Poly w(L);
w[L >> 1] = 1;
for (int i = L / 2 + 1; i < L; i++)
w[i] = MUL(w[i - 1], wn);
for (int i = L / 2 - 1; i >= 1; i--)
w[i] = w[i << 1];
return w;
}
auto W = Omega(1 << 20); // Length
void DIF(int *a, int n)
{
for (int k = n >> 1; k; k >>= 1)
for (int i = 0, y; i < n; i += k << 1)
for (int j = 0; j < k; ++j)
y = a[i + j + k], a[i + j + k] = MUL(a[i + j] - y + P, W[k + j]), ADD(a[i + j], y);
}
void IDIT(int *a, int n)
{
for (int k = 1; k < n; k <<= 1)
for (int i = 0, x, y; i < n; i += k << 1)
for (int j = 0; j < k; ++j)
x = a[i + j], y = MUL(a[i + j + k], W[k + j]),
a[i + j + k] = x - y < 0 ? x - y + P : x - y, ADD(a[i + j], y);
int Inv = P - (P - 1) / n;
for (int i = 0; i < n; i++)
a[i] = MUL(a[i], Inv);
reverse(a + 1, a + n);
}
}
/*---------------------------------------------------------------------------*/
namespace Polynomial
{
// basic operator
int norm(int n) { return 1 << (__lg(n - 1) + 1); }
void norm(Poly &a)
{
if (!a.empty())
a.resize(norm(a.size()), 0);
else
a = {0};
}
void DFT(Poly &a) { NTT::DIF(a.data(), a.size()); }
void IDFT(Poly &a) { NTT::IDIT(a.data(), a.size()); }
Poly &dot(Poly &a, Poly &b)
{
for (int i = 0; i < a.size(); i++)
a[i] = MUL(a[i], b[i]);
return a;
}
// mul / div int
Poly &operator*=(Poly &a, int b)
{
for (auto &x : a)
x = MUL(x, b);
return a;
}
Poly operator*(Poly a, int b) { return a *= b; }
Poly operator*(int a, Poly b) { return b * a; }
Poly &operator/=(Poly &a, int b) { return a *= POW(b); }
Poly operator/(Poly a, int b) { return a /= b; }
// Poly add / sub
Poly &operator+=(Poly &a, Poly b)
{
a.resize(max(a.size(), b.size()));
for (int i = 0; i < b.size(); i++)
ADD(a[i], b[i]);
return a;
}
Poly operator+(Poly a, Poly b) { return a += b; }
Poly &operator-=(Poly &a, Poly b)
{
a.resize(max(a.size(), b.size()));
for (int i = 0; i < b.size(); i++)
SUB(a[i], b[i]);
return a;
}
Poly operator-(Poly a, Poly b) { return a -= b; }
// Poly mul
Poly operator*(Poly a, Poly b)
{
int n = a.size() + b.size() - 1, L = norm(n);
if (a.size() <= 8 || b.size() <= 8)
{
Poly c(n);
for (int i = 0; i < a.size(); i++)
for (int j = 0; j < b.size(); j++)
c[i + j] = (c[i + j] + (i64)a[i] * b[j]) % P;
return c;
}
a.resize(L), b.resize(L);
DFT(a), DFT(b), dot(a, b), IDFT(a);
return a.resize(n), a;
}
// Poly inv
Poly Inv2k(Poly a)
{ // |a| = 2 ^ k
int n = a.size(), m = n >> 1;
if (n == 1)
return {POW(a[0])};
Poly b = Inv2k(Poly(a.begin(), a.begin() + m)), c = b;
b.resize(n), DFT(a), DFT(b), dot(a, b), IDFT(a);
for (int i = 0; i < n; i++)
a[i] = i < m ? 0 : P - a[i];
DFT(a), dot(a, b), IDFT(a);
return move(c.begin(), c.end(), a.begin()), a;
}
Poly Inv(Poly a)
{
int n = a.size();
norm(a), a = Inv2k(a);
return a.resize(n), a;
}
// Poly calculus
Poly deriv(Poly a)
{
for (int i = 1; i < a.size(); i++)
a[i - 1] = MUL(i, a[i]);
return a.pop_back(), a;
}
Poly integ(Poly a)
{
a.push_back(0);
for (int i = a.size() - 1; i >= 1; i--)
a[i] = MUL(inv[i], a[i - 1]);
return a[0] = 0, a;
}
// Poly ln
Poly Ln(Poly a)
{
int n = a.size();
a = deriv(a) * Inv(a);
return a.resize(n - 1), integ(a);
}
// Poly exp
Poly Exp(Poly a)
{
int n = a.size(), k = norm(n);
Poly b = {1}, c, d;
a.resize(k);
for (int L = 2; L <= k; L <<= 1)
{
d = b, b.resize(L), c = Ln(b), c.resize(L);
for (int i = 0; i < L; i++)
c[i] = a[i] - c[i] + (a[i] < c[i] ? P : 0);
ADD(c[0], 1), DFT(b), DFT(c), dot(b, c), IDFT(b);
move(d.begin(), d.end(), b.begin());
}
return b.resize(n), b;
}
// Poly pow
Poly Pow(Poly &a, int b) { return Exp(Ln(a) * b); } // a[0] = 1
Poly Pow(Poly a, int b1, int b2)
{ // b1 = b % P, b2 = b % phi(P) and b >= n iff a[0] > 0
/*
a0 > 1 : f^k(x) = (f(x) * inv(a0))^k * a0^k
a0 = 0 : 右移至第一个系数不为0的项,设为x^d,则f(x) / x^d,转化为问题一,然后乘上(x^d)^k
*/
int n = a.size(), d = 0, k, a0;
while (d < n && !a[d])
++d;
if ((i64)d * b1 >= n)
return Poly(n);
a.erase(a.begin(), a.begin() + d); // f(x) / x^d
a0 = a[0];
k = POW(a0), norm(a *= k); // f(x) * inv(a0)
a = Pow(a, b1) * POW(a0, b2);
a.resize(n), d *= b1;
for (int i = n - 1; i >= 0; i--)
a[i] = i >= d ? a[i - d] : 0; // 乘上(x^d)^k
return a;
}
Poly Pow(Poly a, string str)
{
const int Phi = P - 1;
i64 k = 0, ol = 0, t = 0;
for (int i = 0; i < str.size(); i++)
{
k = (k * 10 + str[i] - '0') % P, ol = (ol * 10 + str[i] - '0') % Phi;
if (t <= P)
t = (t * 10 + str[i] - '0');
}
if (k < P && t >= P)
k += P;
return Pow(a, k, ol);
}
pair<Poly, Poly> div(Poly f, Poly g)
{ // F(x) = G(x) * Q(x) + R(x)
int n = f.size() - 1, m = g.size() - 1;
if (n < m)
return pair<Poly, Poly>{Poly{0}, f};
Poly f_reverse = f, g_reverse = g;
reverse(f_reverse.begin(), f_reverse.end());
reverse(g_reverse.begin(), g_reverse.end());
g_reverse.resize(n - m + 1);
Poly q = f_reverse * Inv(g_reverse);
q.resize(n - m + 1);
reverse(q.begin(), q.end());
Poly r(m), tmp = g * q;
for (int i = 0; i < m; i++)
r[i] = (f[i] - tmp[i] + P) % P;
return pair<Poly, Poly>{q, r};
}
}
using namespace Polynomial;
void solve()
{
double A, B;
cin >> A >> B;
int n;
cin >> n;
vector<double> x(n + 1);
cin >> x[1] >> x[n];
vector<pair<double, double>> coef(n + 1);
coef[1] = {0, 1}, coef[2] = {1, 0};
for (int i = 3; i <= n; i++)
{
coef[i] = {A * coef[i - 1].first + B * coef[i - 2].first,
A * coef[i - 1].second + B * coef[i - 2].second};
}
x[2] = (x[n] - coef[n].second * x[1]) / coef[n].first;
for (int i = 3; i < n; i++)
x[i] = A * x[i - 1] + B * x[i - 2];
for (int i = 1; i <= n; i++)
cout << x[i] << '\n';
}
signed main()
{
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
int t = 1;
// cin >> t;
cout << fixed << setprecision(15);
while (t--)
solve();
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 3ms
memory: 8012kb
input:
1.0 1.0 10 1 10
output:
1.000000000000000 -0.323529411764706 0.676470588235294 0.352941176470588 1.029411764705882 1.382352941176471 2.411764705882353 3.794117647058824 6.205882352941178 10.000000000000000
result:
ok 10 numbers
Test #2:
score: 0
Accepted
time: 3ms
memory: 7900kb
input:
1 1 2 1 100
output:
1.000000000000000 100.000000000000000
result:
ok 2 numbers
Test #3:
score: 0
Accepted
time: 0ms
memory: 7864kb
input:
1 1 5 50 100
output:
50.000000000000000 0.000000000000000 50.000000000000000 50.000000000000000 100.000000000000000
result:
ok 5 numbers
Test #4:
score: 0
Accepted
time: 5ms
memory: 8012kb
input:
0.25 0.25 10 1 1
output:
1.000000000000000 55.875536480686698 14.218884120171674 17.523605150214593 7.935622317596566 6.364806866952790 3.575107296137339 2.484978540772532 1.515021459227468 1.000000000000000
result:
ok 10 numbers
Test #5:
score: 0
Accepted
time: 2ms
memory: 8040kb
input:
0.25 0.63 6 93 12
output:
93.000000000000000 -14.204807958665043 55.038798010333743 4.810670488624458 35.877110368666372 12.000000000000000
result:
ok 6 numbers
Test #6:
score: 0
Accepted
time: 5ms
memory: 8044kb
input:
0.25 0.80 10 5 63
output:
5.000000000000000 78.769536183531358 23.692384045882839 68.938724958295793 36.188588476280216 64.198127085706687 45.000402552450851 62.608602306678065 51.652472618630199 63.000000000000000
result:
ok 10 numbers
Test #7:
score: 0
Accepted
time: 3ms
memory: 8000kb
input:
0.25 0.99 3 18 30
output:
18.000000000000000 48.719999999999999 30.000000000000000
result:
ok 3 numbers
Test #8:
score: 0
Accepted
time: 5ms
memory: 7992kb
input:
0.28 0.64 9 6 10
output:
6.000000000000000 20.950403348507802 9.706112937582185 16.125969765568005 10.727183814411640 13.324232117998783 10.596182634263108 11.494439693112891 10.000000000000000
result:
ok 9 numbers
Test #9:
score: 0
Accepted
time: 3ms
memory: 7996kb
input:
0.31 0.40 7 10 49
output:
10.000000000000000 240.115063998688214 78.435669839593345 120.361083249749214 68.686203743259597 69.437156460310163 49.000000000000000
result:
ok 7 numbers
Test #10:
score: 0
Accepted
time: 2ms
memory: 7912kb
input:
0.32 0.28 5 36 6
output:
36.000000000000000 10.121376811594200 13.318840579710146 7.096014492753623 6.000000000000000
result:
ok 5 numbers
Test #11:
score: 0
Accepted
time: 0ms
memory: 7996kb
input:
0.35 0.65 10 86 82
output:
86.000000000000000 79.533924786230841 83.736873675180789 81.004956897363328 82.780702802944674 81.626467964316802 82.376720609424922 81.889056390104642 82.206038132662826 82.000000000000000
result:
ok 10 numbers
Test #12:
score: 0
Accepted
time: 6ms
memory: 8048kb
input:
0.36 0.68 8 72 59
output:
72.000000000000000 38.239918642605673 62.726370711338042 48.584638133053559 60.144401811609150 54.689538582655715 60.586427121650281 59.000000000000000
result:
ok 8 numbers
Test #13:
score: 0
Accepted
time: 6ms
memory: 8016kb
input:
0.43 0.61 2 93 84
output:
93.000000000000000 84.000000000000000
result:
ok 2 numbers
Test #14:
score: 0
Accepted
time: 2ms
memory: 7920kb
input:
0.46 0.96 6 65 35
output:
65.000000000000000 -16.617423662818052 54.755985115103698 9.235026436642375 56.813857871355040 35.000000000000000
result:
ok 6 numbers
Test #15:
score: 0
Accepted
time: 0ms
memory: 8016kb
input:
0.50 0.90 4 19 1
output:
19.000000000000000 -6.565217391304349 13.817391304347828 1.000000000000000
result:
ok 4 numbers
Test #16:
score: 0
Accepted
time: 3ms
memory: 8044kb
input:
0.54 0.35 3 16 22
output:
16.000000000000000 30.370370370370367 22.000000000000000
result:
ok 3 numbers
Test #17:
score: 0
Accepted
time: 5ms
memory: 8064kb
input:
0.55 0.89 10 74 13
output:
74.000000000000000 -48.321937076576525 39.282934607882908 -21.400909963817504 23.191311320916164 -6.291588641293689 17.179893322903858 3.849427436845739 17.407290147649590 13.000000000000000
result:
ok 10 numbers
Test #18:
score: 0
Accepted
time: 5ms
memory: 7864kb
input:
0.56 0.36 3 31 88
output:
31.000000000000000 137.214285714285694 88.000000000000000
result:
ok 3 numbers
Test #19:
score: 0
Accepted
time: 5ms
memory: 8004kb
input:
0.57 0.93 7 71 48
output:
71.000000000000000 -34.080565361686020 46.604077743838971 -5.130601472379787 40.417349462513769 18.266429824319644 48.000000000000000
result:
ok 7 numbers
Test #20:
score: 0
Accepted
time: 0ms
memory: 8068kb
input:
0.58 0.41 8 30 69
output:
30.000000000000000 89.432121682809822 64.170630576029694 73.886135624049246 69.163917198120728 70.408387580770210 69.194070848076223 69.000000000000000
result:
ok 8 numbers
Test #21:
score: 0
Accepted
time: 5ms
memory: 8092kb
input:
0.58 0.49 6 31 96
output:
31.000000000000000 99.557613538417186 72.933415852281968 91.084611828147956 88.566448627943970 96.000000000000000
result:
ok 6 numbers
Test #22:
score: 0
Accepted
time: 6ms
memory: 8068kb
input:
0.61 0.29 8 62 25
output:
62.000000000000000 34.407651257133729 38.968667266851575 33.749105897348244 31.887868104769382 29.238840254140310 27.083174305408708 25.000000000000000
result:
ok 8 numbers
Test #23:
score: 0
Accepted
time: 6ms
memory: 8068kb
input:
0.63 0.89 9 37 85
output:
37.000000000000000 -5.887853302176884 29.220652419628564 13.168821585428567 34.302738252289416 33.330976309973757 51.527952119821052 62.127178751363907 85.000000000000000
result:
ok 9 numbers
Test #24:
score: 0
Accepted
time: 0ms
memory: 8088kb
input:
0.64 0.67 2 74 42
output:
74.000000000000000 42.000000000000000
result:
ok 2 numbers
Test #25:
score: 0
Accepted
time: 0ms
memory: 7996kb
input:
0.65 0.56 2 94 96
output:
94.000000000000000 96.000000000000000
result:
ok 2 numbers
Test #26:
score: 0
Accepted
time: 0ms
memory: 8064kb
input:
0.65 0.90 10 97 23
output:
97.000000000000000 -61.703576279117570 47.192675418573579 -24.857979629132988 26.315721117779781 -5.266962939662832 20.260623095220961 8.429138366197076 23.713500723726966 23.000000000000000
result:
ok 10 numbers
Test #27:
score: 0
Accepted
time: 6ms
memory: 8016kb
input:
0.67 0.88 4 70 42
output:
70.000000000000000 0.547821506509144 61.967040409361125 42.000000000000000
result:
ok 4 numbers
Test #28:
score: 0
Accepted
time: 0ms
memory: 7888kb
input:
0.69 0.39 10 2 27
output:
2.000000000000000 22.365907687016133 16.212476304041132 19.909312647724676 20.060291485506067 21.606233057611810 22.731814489099513 24.111382889947269 25.502261844812423 27.000000000000000
result:
ok 10 numbers
Test #29:
score: 0
Accepted
time: 3ms
memory: 8040kb
input:
0.69 0.57 4 88 47
output:
88.000000000000000 11.843609597552826 58.332090622311448 47.000000000000000
result:
ok 4 numbers
Test #30:
score: 0
Accepted
time: 2ms
memory: 7992kb
input:
0.71 0.89 8 4 41
output:
4.000000000000000 6.838890362691074 8.415612157510662 12.061697054627626 16.053699728970102 22.133037186187359 30.002249160976415 41.000000000000000
result:
ok 8 numbers
Test #31:
score: 0
Accepted
time: 0ms
memory: 7964kb
input:
0.72 0.49 8 21 48
output:
21.000000000000000 19.940442369940307 24.647118506357018 27.516742085847802 31.889142369925352 36.443386128411674 41.864917773719824 48.000000000000000
result:
ok 8 numbers
Test #32:
score: 0
Accepted
time: 0ms
memory: 7884kb
input:
0.74 0.58 3 57 29
output:
57.000000000000000 -5.486486486486480 29.000000000000000
result:
ok 3 numbers
Test #33:
score: 0
Accepted
time: 5ms
memory: 7900kb
input:
0.76 0.70 2 91 18
output:
91.000000000000000 18.000000000000000
result:
ok 2 numbers
Test #34:
score: 0
Accepted
time: 2ms
memory: 7996kb
input:
0.77 0.36 10 31 25
output:
31.000000000000000 5.214972085026422 15.175528505470346 13.562546899821680 15.906351374832017 17.130407442556457 18.916700225707999 20.732805853115483 22.774272588153803 25.000000000000000
result:
ok 10 numbers
Test #35:
score: 0
Accepted
time: 2ms
memory: 7900kb
input:
0.77 0.96 8 78 68
output:
78.000000000000000 -40.097557007604983 44.004881104144161 -4.609896277109783 38.695065726603858 25.369700183459582 56.681932238803583 68.000000000000000
result:
ok 8 numbers
Test #36:
score: 0
Accepted
time: 0ms
memory: 8048kb
input:
0.78 0.52 7 73 77
output:
73.000000000000000 8.727547506052925 44.767487054721286 39.456964605830130 54.055525661002576 62.680931610613683 77.000000000000000
result:
ok 7 numbers
Test #37:
score: 0
Accepted
time: 2ms
memory: 7884kb
input:
0.78 0.69 4 42 97
output:
42.000000000000000 57.297905113986445 73.672365988909434 97.000000000000000
result:
ok 4 numbers
Test #38:
score: 0
Accepted
time: 0ms
memory: 8068kb
input:
0.78 0.70 10 54 99
output:
54.000000000000000 -13.012886350899695 27.649948646298235 12.457939498482839 29.072156861225380 31.396840000693786 44.840045003398920 56.953023103136815 75.811389522825962 99.000000000000000
result:
ok 10 numbers
Test #39:
score: 0
Accepted
time: 5ms
memory: 8044kb
input:
0.78 0.76 10 97 83
output:
97.000000000000000 -43.734736959040490 39.606905171948419 -2.345014054751001 28.272136967975019 20.270056153409755 37.297467895320622 44.497267634941501 63.053944355698050 83.000000000000000
result:
ok 10 numbers
Test #40:
score: 0
Accepted
time: 3ms
memory: 8092kb
input:
0.78 0.95 10 100 32
output:
100.000000000000000 -63.269578817364128 45.649728522455980 -24.499311628980251 24.257779025728581 -4.353278407462945 19.649332916621056 11.190865187874628 27.395741117332214 32.000000000000000
result:
ok 10 numbers
Test #41:
score: 0
Accepted
time: 2ms
memory: 8048kb
input:
0.79 0.90 10 98 42
output:
98.000000000000000 -58.246914628041367 42.184937443847318 -19.096122584597850 22.880506857630287 0.889090091389861 21.294837344065247 17.623102584062419 33.087604651068034 42.000000000000000
result:
ok 10 numbers
Test #42:
score: 0
Accepted
time: 0ms
memory: 8000kb
input:
0.81 0.48 10 97 1
output:
97.000000000000000 -38.257501681599223 15.571423637904623 -5.750747660464880 2.816177741217666 -0.479254906636833 0.963568841408645 0.550448406355323 0.908376253023961 1.000000000000000
result:
ok 10 numbers
Test #43:
score: 0
Accepted
time: 5ms
memory: 8032kb
input:
0.81 0.86 10 20 100
output:
20.000000000000000 -3.332842869651405 14.500397275582362 8.879076925321506 19.662393966511249 23.562545268650609 35.995320478806669 49.419998518872930 70.986174412060805 100.000000000000000
result:
ok 10 numbers
Test #44:
score: 0
Accepted
time: 3ms
memory: 7916kb
input:
0.84 0.85 10 74 95
output:
74.000000000000000 -36.290804877098296 32.415723903237435 -3.617976066814105 24.514265421627972 17.516703297375507 35.551156378179201 44.752169160439706 67.810305016221662 95.000000000000000
result:
ok 10 numbers
Test #45:
score: 0
Accepted
time: 3ms
memory: 7908kb
input:
0.88 0.37 10 3 96
output:
3.000000000000000 29.021828490376418 26.649209071531246 34.189380524386770 39.946862217926920 47.803309545798797 56.847251420935898 67.712805782369145 80.620752114231124 96.000000000000000
result:
ok 10 numbers
Test #46:
score: 0
Accepted
time: 6ms
memory: 8064kb
input:
0.91 0.50 10 100 98
output:
100.000000000000000 -22.586857854484428 29.445959352419170 15.502394083459230 28.830158292157485 33.986641087592929 45.342922535788304 58.255380051363822 75.683857114635231 98.000000000000000
result:
ok 10 numbers
Test #47:
score: 0
Accepted
time: 11ms
memory: 8044kb
input:
0.94 0.48 10 44 97
output:
44.000000000000000 -1.582743438717800 19.632221167605266 17.694571046964406 26.056362944597065 32.986375270464151 43.514246967642890 56.736852279407103 74.219479687111260 97.000000000000000
result:
ok 10 numbers
Test #48:
score: 0
Accepted
time: 2ms
memory: 7868kb
input:
0.94 0.54 10 28 95
output:
28.000000000000000 0.452546307145841 15.545393528717092 14.857044922852818 22.360134732988879 29.041330907350066 39.373323808723057 52.693243070168712 70.793243342669030 95.000000000000000
result:
ok 10 numbers
Test #49:
score: 0
Accepted
time: 0ms
memory: 7888kb
input:
0.95 0.57 10 2 94
output:
2.000000000000000 9.227284174161063 9.905919965453011 14.670175946452165 19.583041529437772 26.965889742443615 36.779928927100961 50.311489633938777 68.760474640689381 94.000000000000000
result:
ok 10 numbers
Test #50:
score: 0
Accepted
time: 2ms
memory: 7988kb
input:
0.98 0.90 10 21 99
output:
21.000000000000000 -8.213193484970178 10.851070384729228 3.242174840561483 12.943294690006558 15.602386152711762 26.939303650663430 40.442665115090747 63.879185098386017 99.000000000000000
result:
ok 10 numbers
Extra Test:
score: 0
Extra Test Passed