QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#436114 | #7895. Graph Partitioning 2 | Hiraethsoul | TL | 0ms | 9080kb | C++20 | 1.3kb | 2024-06-08 23:17:45 | 2024-06-08 23:17:45 |
Judging History
answer
#include <bits/stdc++.h>
#define int long long
const int p = 998244353;
const int N = 1e5 + 9;
std::unordered_map<int, int> dp[N];
void solve()
{
int n, k;
std::cin >> n >> k;
std::vector<std::vector<int>> g(n + 1);
for (int i = 1; i <= n; ++i)
{
dp[i].clear();
}
for (int i = 1; i < n; ++i)
{
int u, v;
std::cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
auto dfs = [&](auto dfs, int u, int fa) -> void
{
dp[u][1] = 1;
for (auto v : g[u])
{
if (v == fa)
{
continue;
}
dfs(dfs, v, u); // dp
std::unordered_map<int, int> tmp;
for (auto [i, val1] : dp[u])
{
for (auto [j, val2] : dp[v])
{
tmp[i + j] = (tmp[i + j] + val1 * val2 % p) % p;
}
}
dp[u].swap(tmp);
}
dp[u][0] = dp[u][k] + dp[u][k + 1];
dp[u].erase(k + 1);
dp[u][0] %= p;
};
dfs(dfs, 1, 0);
std::cout << dp[1][0] << '\n';
}
signed main()
{
std::ios::sync_with_stdio(0);
std::cin.tie(0);
std::cout.tie(0);
int t;
std::cin >> t;
while (t--)
{
solve();
}
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 9080kb
input:
2 8 2 1 2 3 1 4 6 3 5 2 4 8 5 5 7 4 3 1 2 1 3 2 4
output:
2 1
result:
ok 2 lines
Test #2:
score: -100
Time Limit Exceeded
input:
5550 13 4 10 3 9 1 10 8 3 11 8 5 10 7 9 6 13 5 9 7 2 7 5 12 4 8 8 2 4 1 3 4 7 8 2 5 6 7 4 8 2 3 11 1 11 10 1 4 9 10 8 4 3 6 5 7 6 1 10 2 11 7 11 1 17 2 14 16 13 15 17 3 15 11 1 6 13 2 13 17 4 8 14 10 8 14 14 5 9 12 14 2 12 17 17 6 15 7 14 6 2 14 2 13 2 4 8 4 3 11 7 3 14 1 11 9 13 3 5 10 6 8 3 10 14 ...
output:
0 3 112 0 1 0 1 0 0 0 1 0 1 0 0 1 0 140 0 0 0 814 1 6 1 1 2 2 0 612 0 1 0 0 0 1 1 0 0 121 4536 0 0 1718 0 0 1 0 444 1 1908 1813 3 74 0 1 0 46 0 0 0 0 0 0 0 0 0 1 0 1 1 1 239 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 1 0 0 0 48 0 2 0 0 0 1 364 0 206 0 0 76 0 1 0 0 2 0 1 2 0 0 1 0 0 4 0 1 1 0 0 1 1 1 0 0 1 1 ...