QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#433968#8786. The Whole Worlducup-team159#TL 4905ms4840kbC++2318.8kb2024-06-08 14:03:412024-06-08 14:03:43

Judging History

你现在查看的是最新测评结果

  • [2024-06-08 14:03:43]
  • 评测
  • 测评结果:TL
  • 用时:4905ms
  • 内存:4840kb
  • [2024-06-08 14:03:41]
  • 提交

answer

#line 1 "F.cpp"
// #pragma GCC target("avx2,avx512f,avx512vl,avx512bw,avx512dq,avx512cd,avx512vbmi,avx512vbmi2,avx512vpopcntdq,avx512bitalg,bmi,bmi2,lzcnt,popcnt")
// #pragma GCC optimize("Ofast")

#line 2 "/mnt/c/Users/tsigm/Documents/Cprogram/library/template.hpp"

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
#define rep(i,n) for(int i=0;i<int(n);i++)
#define rep1(i,n) for(int i=1;i<=int(n);i++)
#define per(i,n) for(int i=int(n)-1;i>=0;i--)
#define per1(i,n) for(int i=int(n);i>0;i--)
#define all(c) c.begin(),c.end()
#define si(x) int(x.size())
#define pb push_back
#define eb emplace_back
#define fs first
#define sc second
template<class T> using V = vector<T>;
template<class T> using VV = vector<vector<T>>;
template<class T,class U> bool chmax(T& x, U y){
	if(x<y){ x=y; return true; }
	return false;
}
template<class T,class U> bool chmin(T& x, U y){
	if(y<x){ x=y; return true; }
	return false;
}
template<class T> void mkuni(V<T>& v){sort(all(v));v.erase(unique(all(v)),v.end());}
template<class T> int lwb(const V<T>& v, const T& a){return lower_bound(all(v),a) - v.begin();}
template<class T>
V<T> Vec(size_t a) {
    return V<T>(a);
}
template<class T, class... Ts>
auto Vec(size_t a, Ts... ts) {
  return V<decltype(Vec<T>(ts...))>(a, Vec<T>(ts...));
}
template<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){
	return o<<"("<<p.fs<<","<<p.sc<<")";
}
template<class T> ostream& operator<<(ostream& o,const vector<T> &vc){
	o<<"{";
	for(const T& v:vc) o<<v<<",";
	o<<"}";
	return o;
}
constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); }

#ifdef LOCAL
#define show(x) cerr << "LINE" << __LINE__ << " : " << #x << " = " << (x) << endl
void dmpr(ostream& os){os<<endl;}
template<class T,class... Args>
void dmpr(ostream&os,const T&t,const Args&... args){
	os<<t<<" ~ ";
	dmpr(os,args...);
}
#define shows(...) cerr << "LINE" << __LINE__ << " : ";dmpr(cerr,##__VA_ARGS__)
#define dump(x) cerr << "LINE" << __LINE__ << " : " << #x << " = {";  \
	for(auto v: x) cerr << v << ","; cerr << "}" << endl;
#else
#define show(x) void(0)
#define dump(x) void(0)
#define shows(...) void(0)
#endif

template<class D> D divFloor(D a, D b){
	return a / b - (((a ^ b) < 0 && a % b != 0) ? 1 : 0);
}
template<class D> D divCeil(D a, D b) {
	return a / b + (((a ^ b) > 0 && a % b != 0) ? 1 : 0);
}

/*
x       0  1  2  3  4  5  6  7  8  9
bsr(x) -1  0  1  1  2  2  2  2  3  3
最上位bit
*/
int bsr(int x){
	return x == 0 ? -1 : 31 ^ __builtin_clz(x);
}
int bsr(uint x){
	return x == 0 ? -1 : 31 ^ __builtin_clz(x);
}
int bsr(ll x){
	return x == 0 ? -1 : 63 ^ __builtin_clzll(x);
}
int bsr(ull x){
	return x == 0 ? -1 : 63 ^ __builtin_clzll(x);
}

/*
x       0  1  2  3  4  5  6  7  8  9
bsl(x) -1  0  1  0  2  0  1  0  3  0
最下位bit
*/
int bsl(int x){
	if(x==0) return -1;
	return __builtin_ctz(x);
}
int bsl(uint x){
	if(x==0) return -1;
	return __builtin_ctz(x);
}
int bsl(ll x){
	if(x==0) return -1;
	return __builtin_ctzll(x);
}
int bsl(ull x){
	if(x==0) return -1;
	return __builtin_ctzll(x);
}


template<class T>
T rnd(T l,T r){	//[l,r)
	using D = uniform_int_distribution<T>;
	static random_device rd;
	static mt19937 gen(rd());
	return D(l,r-1)(gen);
}
template<class T>
T rnd(T n){	//[0,n)
	return rnd(T(0),n);
}
#line 5 "F.cpp"

/*
	sunset's BigInt
*/

// base and base_digits must be consistent
const int base = 1000000000;
const int base_digits = 9;

struct Int {
	vector<int> z;
	int sign;

	Int() : sign(1) {}

	Int(long long v) {
		*this = v;
	}

	Int(const string &s) {
		read(s);
	}

	void operator=(const Int &v) {
		sign = v.sign;
		z = v.z;
	}

	void operator=(long long v) {
		sign = 1;
		if (v < 0) {
			sign = -1, v = -v;
		}
		z.clear();
		for (; v > 0; v = v / base) {
			z.push_back(v % base);
		}
	}

	Int operator+(const Int &v) const {
		if (sign == v.sign) {
			Int res = v;
			for (int i = 0, carry = 0; i < (int) max(z.size(), v.z.size()) || carry; ++i) {
				if (i == (int) res.z.size()) {
					res.z.push_back(0);
				}
				res.z[i] += carry + (i < (int) z.size() ? z[i] : 0);
				carry = res.z[i] >= base;
				if (carry) {
					res.z[i] -= base;
				}
			}
			return res;
		} else {
			return *this - (-v);
		}
	}

	Int operator-(const Int &v) const {
		if (sign == v.sign) {
			if (abs() >= v.abs()) {
				Int res = *this;
				for (int i = 0, carry = 0; i < (int) v.z.size() || carry; ++i) {
					res.z[i] -= carry + (i < (int) v.z.size() ? v.z[i] : 0);
					carry = res.z[i] < 0;
					if (carry) {
						res.z[i] += base;
					}
				}
				res.trim();
				return res;
			} else {
				return -(v - *this);
			}
		} else {
			return *this + (-v);
		}
	}

	void operator*=(int v) {
		if (v < 0) {
			sign = -sign, v = -v;
		}
		for (int i = 0, carry = 0; i < (int) z.size() || carry; ++i) {
			if (i == (int) z.size()) {
				z.push_back(0);
			}
			long long cur = (long long) z[i] * v + carry;
			carry = cur / base;
			z[i] = cur % base;
			// asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur), "c"(base));
		}
		trim();
	}

	Int operator*(int v) const {
		Int res = *this;
		res *= v;
		return res;
	}

	friend pair<Int, Int> divmod(const Int &a1, const Int &b1) {
		int norm = base / (b1.z.back() + 1);
		Int a = a1.abs() * norm;
		Int b = b1.abs() * norm;
		Int q, r;
		q.z.resize(a.z.size());
		for (int i = a.z.size() - 1; i >= 0; i--) {
			r *= base;
			r += a.z[i];
			int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0;
			int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0;
			int d = ((long long) s1 * base + s2) / b.z.back();
			r -= b * d;
			while (r < 0) {
				r += b, --d;
			}
			q.z[i] = d;
		}
		q.sign = a1.sign * b1.sign;
		r.sign = a1.sign;
		q.trim();
		r.trim();
		return make_pair(q, r / norm);
	}

	friend Int sqrt(const Int &a1) {
		Int a = a1;
		while (a.z.empty() || (int) a.z.size() % 2 == 1) {
			a.z.push_back(0);
		}
		int n = a.z.size();
		int firstDigit = sqrt((long long) a.z[n - 1] * base + a.z[n - 2]);
		int norm = base / (firstDigit + 1);
		a *= norm;
		a *= norm;
		while (a.z.empty() || (int) a.z.size() % 2 == 1) {
			a.z.push_back(0);
		}
		Int r = (long long) a.z[n - 1] * base + a.z[n - 2];
		firstDigit = sqrt((long long) a.z[n - 1] * base + a.z[n - 2]);
		int q = firstDigit;
		Int res;
		for (int j = n / 2 - 1; j >= 0; j--) {
			for (;; --q) {
				Int r1 =
					(r - (res * 2 * base + q) * q) * base * base +
					(j > 0 ? (long long) a.z[2 * j - 1] * base + a.z[2 * j - 2] : 0);
				if (r1 >= 0) {
					r = r1;
					break;
				}
			}
			res *= base;
			res += q;
			if (j > 0) {
				int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0;
				int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0;
				int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : 0;
				q = ((long long) d1 * base * base + (long long) d2 * base + d3) /
						(firstDigit * 2);
			}
		}
		res.trim();
		return res / norm;
	}

	Int operator/(const Int &v) const {
		return divmod(*this, v).first;
	}

	Int operator%(const Int &v) const {
		return divmod(*this, v).second;
	}

	void operator/=(int v) {
		if (v < 0) {
			sign = -sign, v = -v;
		}
		for (int i = z.size() - 1, rem = 0; i >= 0; --i) {
			long long cur = z[i] + (long long) rem * base;
			z[i] = cur / v;
			rem = cur % v;
		}
		trim();
	}

	Int operator/(int v) const {
		Int res = *this;
		res /= v;
		return res;
	}

	int operator%(int v) const {
		if (v < 0) {
			v = -v;
		}
		int m = 0;
		for (int i = z.size() - 1; i >= 0; --i) {
			m = ((long long) m * base + z[i]) % v;
		}
		return m * sign;
	}

	void operator+=(const Int &v) {
		*this = *this + v;
	}
	void operator-=(const Int &v) {
		*this = *this - v;
	}
	void operator*=(const Int &v) {
		*this = *this * v;
	}
	void operator/=(const Int &v) {
		*this = *this / v;
	}

	bool operator<(const Int &v) const {
		if (sign != v.sign) {
			return sign < v.sign;
		}
		if (z.size() != v.z.size()) {
			return z.size() * sign < v.z.size() * v.sign;
		}
		for (int i = z.size() - 1; i >= 0; i--) {
			if (z[i] != v.z[i]) {
				return z[i] * sign < v.z[i] * sign;
			}
		}
		return false;
	}

	bool operator>(const Int &v) const {
		return v < *this;
	}
	bool operator<=(const Int &v) const {
		return !(v < *this);
	}
	bool operator>=(const Int &v) const {
		return !(*this < v);
	}
	bool operator==(const Int &v) const {
		return !(*this < v) && !(v < *this);
	}
	bool operator!=(const Int &v) const {
		return *this < v || v < *this;
	}

	void trim() {
		while (!z.empty() && z.back() == 0) {
			z.pop_back();
		}
		if (z.empty()) {
			sign = 1;
		}
	}

	bool isZero() const {
		return z.empty() || ((int) z.size() == 1 && !z[0]);
	}

	Int operator-() const {
		Int res = *this;
		res.sign = -sign;
		return res;
	}

	Int abs() const {
		Int res = *this;
		res.sign *= res.sign;
		return res;
	}

	long long longValue() const {
		long long res = 0;
		for (int i = z.size() - 1; i >= 0; i--) {
			res = res * base + z[i];
		}
		return res * sign;
	}

	friend Int gcd(const Int &a, const Int &b) {
		return b.isZero() ? a : gcd(b, a % b);
	}
	friend Int lcm(const Int &a, const Int &b) {
		return a / gcd(a, b) * b;
	}

	void read(const string &s) {
		sign = 1;
		z.clear();
		int pos = 0;
		while (pos < (int) s.size() && (s[pos] == '-' || s[pos] == '+')) {
			if (s[pos] == '-') {
				sign = -sign;
			}
			++pos;
		}
		for (int i = s.size() - 1; i >= pos; i -= base_digits) {
			int x = 0;
			for (int j = max(pos, i - base_digits + 1); j <= i; j++) {
				x = x * 10 + s[j] - '0';
			}
			z.push_back(x);
		}
		trim();
	}

	friend istream &operator>>(istream &stream, Int &v) {
		string s;
		stream >> s;
		v.read(s);
		return stream;
	}

	friend ostream &operator<<(ostream &stream, const Int &v) {
		if (v.sign == -1) {
			stream << '-';
		}
		stream << (v.z.empty() ? 0 : v.z.back());
		for (int i = v.z.size() - 2; i >= 0; --i) {
			stream << setw(base_digits) << setfill('0') << v.z[i];
		}
		return stream;
	}

	static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
		vector<long long> p(max(old_digits, new_digits) + 1);
		p[0] = 1;
		for (int i = 1; i < (int) p.size(); i++) {
			p[i] = p[i - 1] * 10;
		}
		vector<int> res;
		long long cur = 0;
		int cur_digits = 0;
		for (int i = 0; i < (int) a.size(); i++) {
			cur += a[i] * p[cur_digits];
			cur_digits += old_digits;
			while (cur_digits >= new_digits) {
				res.push_back(cur % p[new_digits]);
				cur /= p[new_digits];
				cur_digits -= new_digits;
			}
		}
		res.push_back(cur);
		while (!res.empty() && res.back() == 0) {
			res.pop_back();
		}
		return res;
	}

	typedef vector<long long> vll;

	static vll karatsubaMultiply(const vll &a, const vll &b) {
		int n = a.size();
		vll res(n + n);
		if (n <= 32) {
			for (int i = 0; i < n; i++) {
				for (int j = 0; j < n; j++) {
					res[i + j] += a[i] * b[j];
				}
			}
			return res;
		}
		int k = n >> 1;
		vll a1(a.begin(), a.begin() + k);
		vll a2(a.begin() + k, a.end());
		vll b1(b.begin(), b.begin() + k);
		vll b2(b.begin() + k, b.end());
		vll a1b1 = karatsubaMultiply(a1, b1);
		vll a2b2 = karatsubaMultiply(a2, b2);
		for (int i = 0; i < k; i++) {
			a2[i] += a1[i];
		}
		for (int i = 0; i < k; i++) {
			b2[i] += b1[i];
		}
		vll r = karatsubaMultiply(a2, b2);
		for (int i = 0; i < (int) a1b1.size(); i++) {
			r[i] -= a1b1[i];
		}
		for (int i = 0; i < (int) a2b2.size(); i++) {
			r[i] -= a2b2[i];
		}
		for (int i = 0; i < (int) r.size(); i++) {
			res[i + k] += r[i];
		}
		for (int i = 0; i < (int) a1b1.size(); i++) {
			res[i] += a1b1[i];
		}
		for (int i = 0; i < (int) a2b2.size(); i++) {
			res[i + n] += a2b2[i];
		}
		return res;
	}

	Int operator*(const Int &v) const {
		vector<int> a6 = convert_base(this->z, base_digits, 6);
		vector<int> b6 = convert_base(v.z, base_digits, 6);
		vll a(a6.begin(), a6.end());
		vll b(b6.begin(), b6.end());
		while (a.size() < b.size()) {
			a.push_back(0);
		}
		while (b.size() < a.size()) {
			b.push_back(0);
		}
		while (a.size() & (a.size() - 1)) {
			a.push_back(0);
			b.push_back(0);
		}
		vll c = karatsubaMultiply(a, b);
		Int res;
		res.sign = sign * v.sign;
		for (int i = 0, carry = 0; i < (int) c.size(); i++) {
			long long cur = c[i] + carry;
			res.z.push_back(cur % 1000000);
			carry = cur / 1000000;
		}
		res.z = convert_base(res.z, 6, base_digits);
		res.trim();
		return res;
	}
};

template<unsigned int mod_>
struct ModInt{	
	using uint = unsigned int;
	using ll = long long;
	using ull = unsigned long long;

	constexpr static uint mod = mod_;

	uint v;
	ModInt():v(0){}
	ModInt(ll _v):v(normS(_v%mod+mod)){}
	explicit operator bool() const {return v!=0;}
	static uint normS(const uint &x){return (x<mod)?x:x-mod;}		// [0 , 2*mod-1] -> [0 , mod-1]
	static ModInt make(const uint &x){ModInt m; m.v=x; return m;}
	ModInt operator+(const ModInt& b) const { return make(normS(v+b.v));}
	ModInt operator-(const ModInt& b) const { return make(normS(v+mod-b.v));}
	ModInt operator-() const { return make(normS(mod-v)); }
	ModInt operator*(const ModInt& b) const { return make((ull)v*b.v%mod);}
	ModInt operator/(const ModInt& b) const { return *this*b.inv();}
	ModInt& operator+=(const ModInt& b){ return *this=*this+b;}
	ModInt& operator-=(const ModInt& b){ return *this=*this-b;}
	ModInt& operator*=(const ModInt& b){ return *this=*this*b;}
	ModInt& operator/=(const ModInt& b){ return *this=*this/b;}
	ModInt& operator++(int){ return *this=*this+1;}
	ModInt& operator--(int){ return *this=*this-1;}
	template<class T> friend ModInt operator+(T a, const ModInt& b){ return (ModInt(a) += b);}
	template<class T> friend ModInt operator-(T a, const ModInt& b){ return (ModInt(a) -= b);}
	template<class T> friend ModInt operator*(T a, const ModInt& b){ return (ModInt(a) *= b);}
	template<class T> friend ModInt operator/(T a, const ModInt& b){ return (ModInt(a) /= b);}
	ModInt pow(ll p) const {
		if(p<0) return inv().pow(-p);
		ModInt a = 1;
		ModInt x = *this;
		while(p){
			if(p&1) a *= x;
			x *= x;
			p >>= 1;
		}
		return a;
	}
	ModInt inv() const {		// should be prime
		return pow(mod-2);
	}
	// ll extgcd(ll a,ll b,ll &x,ll &y) const{
	// 	ll p[]={a,1,0},q[]={b,0,1};
	// 	while(*q){
	// 		ll t=*p/ *q;
	// 		rep(i,3) swap(p[i]-=t*q[i],q[i]);
	// 	}
	// 	if(p[0]<0) rep(i,3) p[i]=-p[i];
	// 	x=p[1],y=p[2];
	// 	return p[0];
	// }
	// ModInt inv() const {
	// 	ll x,y;
	// 	extgcd(v,mod,x,y);
	// 	return make(normS(x+mod));
	// }

	bool operator==(const ModInt& b) const { return v==b.v;}
	bool operator!=(const ModInt& b) const { return v!=b.v;}
	bool operator<(const ModInt& b) const { return v<b.v;}
	friend istream& operator>>(istream &o,ModInt& x){
		ll tmp;
		o>>tmp;
		x=ModInt(tmp);
		return o;
	}
	friend ostream& operator<<(ostream &o,const ModInt& x){ return o<<x.v;}
	// friend ostream& operator<<(ostream &o,const ModInt& x){
	// 	for(int b=1;b<=100;b++){
	// 		for(int a=-100;a<=100;a++){
	// 			if(ModInt(a)/b == x){
	// 				return o << a << "/" << b;
	// 			}
	// 		}
	// 	}
	// 	return o<<x.v;
	// }
};
using mint = ModInt<998244353>;
/*
	左c列をsweep 指定しないとc = w
	行のswapはする
	掃き出しに使った列の集合を返す
*/
template<class T>
vector<int> sweep(vector<vector<T>>& a, int c = -1){
	if(a.empty()) return {};
	if(c == -1) c = a[0].size();
	int h = a.size(), w = a[0].size(), r = 0;
	vector<int> used_col;
	rep(i,c){
		if(r == h) break;
		for(int j=r;j<h;j++) if(a[j][i]){
			swap(a[r],a[j]); break;
		}
		if(!a[r][i]) continue;
		rep(j,h) if(j != r){
			const T t = -a[j][i]/a[r][i];
			for(int k=i;k<w;k++) a[j][k] += a[r][k]*t;
		}
		used_col.pb(i);
		r++;
	}
	return used_col;
}

/*
	ax = b の解のひとつを出力
	解空間は (output) + ker(a)
	解が存在しないなら {}

	式が0個(si(a) == 0) で壊れないように変数の個数 ( = si(a[0]) ) w を与える
*/
template<class T>
vector<T> linearEquation(vector<vector<T>> a, int w, vector<T> b){
	assert(a.size() == b.size());
	int h = a.size();
	rep(i,h) a[i].pb(b[i]);
	vector<int> idx = sweep(a,w);
	for(int i = idx.size();i<h;i++) if(a[i][w]) return {};
	vector<T> x(w);
	rep(i,idx.size()) x[idx[i]] = a[i][w] / a[i][idx[i]];
	return x;
}


Int C(Int x,int i){
	Int res = 1;
	rep(j,i){
		res *= x-j;
		res /= j+1;
	}
	return res;
}

bool has_int_solution(vector<vector<Int>> A, vector<Int> b){
	assert(si(A) == si(b));
	int M = si(A);
	if(M == 0) return true;
	int N = si(A[0]);
	auto Swap = [&](int i, int j){
		rep(k,M) swap(A[k][i],A[k][j]);
	};
	auto sub = [&](int i, int j, Int c){
		// A[*][i] -= A[*][j] * c
		assert(i != j);
		rep(k,M) A[k][i] -= A[k][j] * c;
	};
	auto flip = [&](int i){
		// A[*][i] *= -1
		rep(k,M) A[k][i] = -A[k][i];
	};

	rep(i,N) if(A[0][i] < 0) flip(i);
	{
		int non0 = -1;
		rep(i,N) if(A[0][i] != 0) non0 = i;
		if(non0 == -1){
			if(b[0] != 0) return false;
			vector<vector<Int>> AA(M-1,vector<Int>(N));
			rep(i,M-1) rep(j,N) AA[i][j] = A[i+1][j];
			vector<Int> bb(M-1);
			rep(i,M-1) bb[i] = b[i+1];
			return has_int_solution(AA,bb);
		}
		Swap(0,non0);
		assert(A[0][0] != 0);
	}
	for(int i=1;i<N;i++){
		while(A[0][i] != 0){
			if(A[0][0] < A[0][i]){
				Swap(0,i); continue;
			}
			Int q = A[0][0]/A[0][i];
			sub(0,i,q);
		}
	}
	if(b[0]%A[0][0] != 0) return false;
	Int q = b[0]/A[0][0];
	vector<vector<Int>> AA(M-1,vector<Int>(N-1));
	rep(k,M-1) rep(i,N-1) AA[k][i] = A[k+1][i+1];
	vector<Int> bb(M-1);
	rep(k,M-1) bb[k] = b[k+1] - q * A[k+1][0];
	return has_int_solution(AA,bb);
}

int solve(){
	std::random_device seed_gen;
	std::mt19937 engine(seed_gen());

	int M; cin >> M;
	vector<Int> xs(M), ys(M);
	rep(i,M) cin >> xs[i] >> ys[i];
	rep(i,M-1) rep(j,M-1){
		if(xs[j] > xs[j+1]){
			swap(xs[j],xs[j+1]);
			swap(ys[j],ys[j+1]);
		}
	}
	auto has = [&](int D){
		int N = D+1;
		vector<vector<Int>> A(M,vector<Int>(N));
		vector<Int> b = ys;
		{
			rep(i,M){
				rep(j,N){
					A[i][j] = C(xs[i],j);
				}
			}
			rep(i,M) b[i] = ys[i];

		}

		{
			// precheck via mint
			vector<vector<mint>> mA(M,vector<mint>(N));
			vector<mint> mb(M);
			rep(i,M) rep(j,N) mA[i][j] = A[i][j].longValue();
			rep(i,M) mb[i] = b[i].longValue();
			if(linearEquation(mA,N,mb).empty()) return false;
		}
		return has_int_solution(A,b);
	};
	int lb = -1, ub = 30;
	while(ub-lb>1){
		int m = (lb+ub)/2;
		if(has(m)) ub = m;
		else lb = m;
	}
	return ub;
}

int main(){
	cin.tie(0);
	ios::sync_with_stdio(false);		//DON'T USE scanf/printf/puts !!
	cout << fixed << setprecision(20);

	int T; cin >> T;
	while(T--) cout << solve() << endl;
}

詳細信息

Test #1:

score: 100
Accepted
time: 0ms
memory: 3816kb

input:

2
2
1 0
4 1
3
1 1
4 4
6 6

output:

3
1

result:

ok 2 number(s): "3 1"

Test #2:

score: 0
Accepted
time: 1ms
memory: 3664kb

input:

2
2
1 0
4 1
3
1 0
3 0
5 4

output:

3
3

result:

ok 2 number(s): "3 3"

Test #3:

score: 0
Accepted
time: 3ms
memory: 3728kb

input:

2
10
1 557
2 -172
3 -497
5 763
6 -149
7 -355
8 -29
9 -588
10 -171
11 -355
10
1 -461
2 -219
3 -45
4 -212
5 749
6 -294
9 -85
10 213
11 -412
12 125

output:

10
11

result:

ok 2 number(s): "10 11"

Test #4:

score: 0
Accepted
time: 2928ms
memory: 4348kb

input:

20
10
1 -193165761
4 426322868
5 -408198139
7 -455731045
9 -389028341
17 -590246653
18 119481348
21 809814532
23 47591392
26 -21020402
10
3 -715116939
5 -263142266
6 -426687860
10 342227448
14 141724722
15 576758779
18 123410194
19 256532828
20 -223524833
25 386574889
10
5 34943085
7 238431559
9 168...

output:

25
22
23
20
20
25
23
25
26
23
23
25
29
23
24
29
29
27
25
19

result:

ok 20 numbers

Test #5:

score: 0
Accepted
time: 2182ms
memory: 4216kb

input:

100
10
1 158027281
3 -154375927
6 -515683907
9 -801063453
15 371607728
16 -30224647
24 -215349633
26 219182013
29 -87257968
30 186925822
10
2 205585983
9 740879281
11 -672242855
14 -53907640
16 146130715
20 -17941862
25 -424140108
26 593743162
27 -8310423
28 84863497
10
3 46810292
4 361101002
5 4687...

output:

29
25
25
20
19
25
20
29
29
19
25
19
26
26
27
21
27
26
25
25
24
26
27
25
25
27
26
23
27
23
29
25
27
26
28
29
29
20
21
23
22
25
23
16
25
29
26
25
26
18
23
18
23
19
28
19
26
26
24
18
26
19
23
27
21
23
17
26
28
25
27
23
16
19
25
26
23
25
14
23
20
20
25
23
24
23
19
19
20
20
22
26
26
25
22
23
28
17
19
19

result:

ok 100 numbers

Test #6:

score: 0
Accepted
time: 1838ms
memory: 4784kb

input:

100
30
1 -519015304
2 269671593
3 -163533023
4 830108438
5 337806976
6 -87888761
7 -195233355
8 -341350273
9 38092088
10 285610643
11 -240058763
12 256373103
13 297741964
14 -247379404
15 -26410774
16 -755197562
17 -643221179
18 159031836
19 689848941
20 622207228
21 -407862690
22 401550934
23 10884...

output:

29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29

result:

ok 100 numbers

Test #7:

score: 0
Accepted
time: 1869ms
memory: 4780kb

input:

100
29
1 149105603
2 19193029
3 -254160491
4 -298710412
5 -329725675
6 644578442
7 611132722
8 -806708763
9 506813970
10 566271854
11 -621025393
12 293347092
13 -332652769
14 -320671582
15 507576094
16 -153368460
17 -242687628
18 545685752
19 -359086703
20 -31631637
21 34200734
22 695203819
23 66205...

output:

29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
28
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
28
29
29
29
29
29
29
29
28
29
29
29
29
28
29
29
29
29
29
29
29
28
29

result:

ok 100 numbers

Test #8:

score: 0
Accepted
time: 1853ms
memory: 4604kb

input:

100
27
1 -219694090
2 313611706
3 19681553
4 -393439728
5 137039465
6 -210242538
7 -257014477
8 711593910
9 -126342644
10 317378740
12 -27880234
14 -312500245
15 -611623850
16 26965932
17 -344751802
19 25604908
20 -925684523
21 218732296
22 -906235432
23 128008760
24 128339229
25 -373435576
26 78643...

output:

29
29
29
29
29
29
29
29
29
28
28
29
29
29
28
29
29
29
29
29
29
29
29
29
29
28
28
29
29
29
29
29
29
29
29
29
29
29
29
28
29
29
29
29
29
29
29
29
28
29
28
29
29
29
29
28
29
29
29
28
29
29
29
29
28
28
29
28
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
28
29
29
28
29
28
29
29
29
29
29
29
29
29
29
28
29

result:

ok 100 numbers

Test #9:

score: 0
Accepted
time: 1793ms
memory: 4840kb

input:

100
26
1 66877446
2 -164941227
3 225463507
4 184131912
5 102090525
7 758317818
8 -97450001
9 370239141
11 3046899
13 323733227
14 -130439971
16 -635446409
17 -859978167
18 48284039
19 -447989609
20 -127277242
21 557802358
22 101519428
23 62166242
24 -314606125
25 -689141632
26 -358169960
27 -4857611...

output:

29
29
28
29
29
29
28
29
29
29
29
29
29
28
29
29
28
28
29
29
29
29
29
29
28
29
28
27
29
27
28
29
29
29
29
29
28
29
29
28
29
28
29
29
29
29
28
28
29
29
29
29
29
29
29
29
29
29
28
29
28
29
28
27
29
29
28
29
29
29
29
29
29
29
29
29
29
29
29
28
29
28
29
29
29
29
29
29
29
29
29
28
29
28
29
29
28
28
29
29

result:

ok 100 numbers

Test #10:

score: 0
Accepted
time: 1775ms
memory: 4572kb

input:

100
25
1 348246102
2 -750467389
3 -68044274
4 -686461116
5 -293360003
7 -262211929
8 669230593
9 -78704756
10 609746050
11 41527955
12 -497959309
14 -647052946
15 -588566559
16 -19571993
18 -540729853
19 146529178
20 -814716222
21 28809002
22 -486593284
24 330571691
25 -313603881
26 757285671
27 -65...

output:

29
29
27
29
27
29
28
29
28
28
29
29
28
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
27
28
29
29
29
29
29
28
29
29
28
27
28
29
29
29
27
28
29
27
28
28
29
29
29
28
28
29
29
28
29
28
29
29
29
27
28
29
29
29
28
29
28
29
29
29
29
28
28
29
27
29
29
28
29
29
27
29
29
27
29
29
29
29
29
28
29
29

result:

ok 100 numbers

Test #11:

score: 0
Accepted
time: 1694ms
memory: 4520kb

input:

100
24
1 232880847
2 -489768736
4 -535788421
5 -109001398
6 -632734245
8 -411753361
10 275051825
11 577581411
12 -81737036
13 -221509120
14 -561678665
15 365478690
19 -324173702
20 208854667
21 -387192388
22 -649434295
23 291048454
24 344365482
25 76539150
26 126031273
27 -396021296
28 -344960240
29...

output:

29
29
29
29
26
28
29
26
28
29
29
29
29
29
27
29
28
25
28
29
28
29
29
29
29
27
29
28
29
27
29
28
29
28
28
27
29
29
29
28
29
29
29
28
27
28
28
29
27
29
27
29
29
29
29
29
27
28
28
28
29
29
29
28
28
28
29
29
29
27
28
28
29
29
29
27
28
28
26
29
28
26
29
29
27
29
29
29
29
29
29
27
29
29
29
27
28
29
27
27

result:

ok 100 numbers

Test #12:

score: 0
Accepted
time: 1754ms
memory: 4536kb

input:

100
23
1 478739509
2 359667718
3 -882444045
4 57243210
5 -383836266
7 697287195
8 794293697
9 596461407
10 -376755911
11 -342210915
14 -307035202
15 516844954
16 273425410
17 622517588
18 331049509
20 291385046
21 441000840
23 301865030
25 -47497896
26 454086322
27 -700208571
28 75982830
30 86810034...

output:

29
29
29
29
27
28
28
29
29
29
29
28
29
27
29
28
27
28
29
28
27
27
29
29
29
27
29
28
29
29
27
27
29
29
29
29
29
27
29
29
28
29
29
29
28
28
27
29
29
29
28
29
28
29
29
29
29
29
28
29
28
27
28
28
29
27
29
29
28
29
29
29
27
28
29
28
29
29
28
27
27
29
27
29
29
29
28
27
28
27
29
28
29
28
29
27
28
27
26
29

result:

ok 100 numbers

Test #13:

score: 0
Accepted
time: 1789ms
memory: 4752kb

input:

100
22
1 82224311
2 380989415
3 -57663623
4 11085277
5 -582683316
8 -471665926
9 -6237828
10 207354682
11 -637027084
12 -377093059
15 -525136114
17 -487354995
18 547677692
19 -4946643
21 585507148
22 -819450009
23 700393091
24 -382069257
27 687298238
28 -217201782
29 -213847359
30 -618012461
22
1 -1...

output:

29
27
29
29
28
29
27
28
29
28
29
27
29
27
29
27
29
29
29
29
29
29
29
29
28
28
29
27
29
29
28
29
28
29
29
27
26
29
26
29
28
29
29
29
29
28
27
29
29
29
27
29
29
29
27
29
27
29
28
26
27
27
29
28
29
28
26
29
28
29
27
29
29
29
29
29
28
29
27
29
29
29
28
29
28
29
27
27
28
27
28
29
29
29
29
28
29
29
29
29

result:

ok 100 numbers

Test #14:

score: 0
Accepted
time: 1669ms
memory: 4384kb

input:

100
21
1 230002188
2 183945321
3 651536456
4 -643918753
5 211711257
6 654169344
7 -36956799
10 -563182976
11 780329888
12 83318851
14 680921670
16 144574582
17 -412078292
20 59369731
22 191902719
23 -168624389
25 -230822751
26 162445773
28 529054626
29 349224830
30 60377140
21
1 -116191033
3 9358547...

output:

29
25
29
26
29
29
29
27
29
29
29
29
29
29
29
29
26
29
29
29
27
29
26
29
28
29
28
27
29
28
29
27
29
27
29
27
29
28
29
29
27
29
29
28
28
29
28
26
29
29
28
29
27
29
27
28
29
29
29
27
29
27
26
28
27
29
29
28
26
29
29
29
29
29
29
26
27
28
26
28
29
27
27
27
26
28
29
29
29
27
27
29
29
28
27
29
27
27
26
27

result:

ok 100 numbers

Test #15:

score: 0
Accepted
time: 786ms
memory: 4116kb

input:

100
20
1 79862239
2 13563425
3 442926139
4 751723600
5 -388108679
6 340056379
7 265769938
8 264356154
9 -767173552
10 677960143
11 -417566533
12 -109239724
13 -217075453
14 -431467593
15 283334122
16 -184655006
17 -583644166
18 687896311
19 -428898891
20 -153559940
20
1 45135061
2 -402948599
3 -3068...

output:

19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19

result:

ok 100 numbers

Test #16:

score: 0
Accepted
time: 772ms
memory: 4020kb

input:

100
19
1 -181371540
2 13240092
3 314423105
5 -394312316
6 -234691535
7 -361087288
8 -86290439
9 380662523
10 441658935
11 53438172
12 730947574
13 63208482
14 366463967
15 -421649955
16 777637605
17 885895472
18 825604443
19 -300184228
20 -242061244
19
1 -361908907
2 -299110845
3 680021944
4 9035898...

output:

19
19
19
19
18
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
18
19
19
18
19
18
19
19
19
19
19
18
18
19
19
19
19
19
19
19
19
19
19
19
19
19
18
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
18
19
19
19
19
18
19
19
19
19
19
18
19
19
19
18
19
19
19
18
19

result:

ok 100 numbers

Test #17:

score: 0
Accepted
time: 750ms
memory: 4244kb

input:

100
18
1 -354653395
2 42066904
4 -68276768
5 -192085395
6 58560317
7 -207318090
8 537360505
9 40763183
10 156146366
11 -429382519
12 322008688
13 -28358871
14 609666646
15 -9538294
16 703168906
18 -72298640
19 477629958
20 -13376890
18
1 202247530
3 -69182766
4 318152992
5 -103746478
6 188766430
7 -...

output:

19
18
19
18
19
19
19
19
19
19
19
19
19
17
19
18
19
19
18
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
18
18
18
19
18
19
19
19
19
19
18
19
19
19
18
18
18
18
19
19
19
18
19
18
19
19
19
19
19
19
19
19
19
19
19
19
19
18
19
18
19
19
19
19
19
19
19
19
19
19
18
18
19
19
19
19
19
18
19
19
19
18
19
19
19
18

result:

ok 100 numbers

Test #18:

score: 0
Accepted
time: 757ms
memory: 4056kb

input:

100
17
1 -520284730
2 -514466075
3 79886711
4 -425878138
5 180732260
6 55285306
8 345562838
9 90565947
10 -355737856
12 -707405720
13 -702604328
14 461805437
15 -617984149
16 315426606
17 98275951
19 301389112
20 17753554
17
2 257428766
3 -138011315
5 -57866095
6 465506635
7 550205616
8 439902409
9 ...

output:

19
17
19
18
18
18
18
18
19
19
19
19
18
19
19
18
19
19
19
18
19
19
19
19
19
19
18
19
18
19
19
19
19
18
19
19
19
19
18
19
19
18
19
19
18
17
19
19
19
19
19
18
19
18
19
19
19
19
19
19
19
17
19
19
19
19
19
19
19
19
19
18
19
18
18
18
19
19
19
19
18
19
19
16
18
18
17
19
19
19
18
18
19
18
19
19
19
17
19
18

result:

ok 100 numbers

Test #19:

score: 0
Accepted
time: 675ms
memory: 4036kb

input:

100
16
1 -436119416
3 391185595
4 -435418162
7 -691793974
8 245585835
10 -371621633
11 210958524
12 569976178
13 768802725
14 -941519049
15 -343297444
16 511343513
17 196563299
18 -480863886
19 124725083
20 904182202
16
2 334944378
6 648051647
7 -765319693
8 -618274082
9 -103023609
10 -523171753
11 ...

output:

19
17
19
18
19
19
19
18
19
19
19
19
18
19
19
19
18
16
19
18
19
19
19
19
18
18
19
19
18
19
17
18
19
18
17
19
19
19
19
17
19
19
18
19
18
17
19
19
18
19
19
19
19
19
18
18
19
18
19
18
19
19
19
17
18
19
19
17
18
18
17
19
19
19
19
18
18
19
19
18
19
19
18
19
18
19
18
18
18
18
19
19
19
18
19
19
18
19
19
18

result:

ok 100 numbers

Test #20:

score: 0
Accepted
time: 686ms
memory: 4232kb

input:

100
15
3 393201231
4 -473082363
5 288075459
6 -781304926
8 -344605578
9 -762599458
10 148398381
11 -74721014
12 30515839
15 135235819
16 249775138
17 10438875
18 380474650
19 -188178720
20 236686798
15
1 -288477317
2 127071531
4 -144735677
5 558661851
7 399284631
9 -222168762
10 161402510
12 4769221...

output:

17
19
18
19
19
19
18
17
19
19
19
17
18
19
19
19
19
18
19
19
18
18
18
18
18
16
18
19
18
18
19
19
18
19
19
17
17
19
19
16
19
18
19
17
19
18
18
17
18
19
19
19
18
19
19
18
19
19
18
18
18
19
17
18
18
18
19
18
18
19
19
19
18
19
19
18
19
19
19
18
19
18
19
17
19
19
18
19
19
19
17
18
18
17
18
19
19
18
17
19

result:

ok 100 numbers

Test #21:

score: 0
Accepted
time: 632ms
memory: 3940kb

input:

100
14
1 -192276589
2 463022051
4 -80886076
6 217581726
7 60147874
9 910596718
10 835086587
11 271854523
12 42865965
14 -29751969
15 -113715891
18 -51572533
19 -473585126
20 -629221007
14
1 -11470255
2 81461908
4 -59304196
5 181367500
7 -159328723
9 237736152
10 -486771655
11 -395980960
14 657515062...

output:

19
19
19
19
19
17
18
19
18
18
18
18
18
18
19
19
18
17
16
19
17
18
19
18
19
18
19
16
18
18
18
17
17
17
19
19
19
19
18
17
19
17
18
17
19
17
16
18
18
19
19
18
19
18
19
16
18
16
17
18
17
19
18
19
17
17
19
18
17
19
19
18
19
19
17
17
19
19
18
18
19
19
18
18
19
18
18
17
18
17
17
18
17
19
19
19
18
17
18
18

result:

ok 100 numbers

Test #22:

score: 0
Accepted
time: 595ms
memory: 3924kb

input:

100
13
1 -863121769
3 -233128926
4 -377235222
5 -673951134
6 4136818
7 405871550
9 -260407300
12 72841502
13 244040530
15 408164919
16 287387341
17 156191482
18 134237218
13
2 57325712
4 637332399
5 -101974089
6 126851796
11 -221389590
12 175998065
13 -566603004
14 142214875
15 -57895880
16 43406090...

output:

17
18
17
18
14
19
18
17
17
16
16
18
16
19
19
16
16
19
18
19
18
19
18
18
17
18
19
18
18
17
19
17
19
19
19
19
17
19
15
18
16
19
17
18
17
16
19
19
18
17
15
19
18
17
19
19
18
19
17
16
17
18
19
19
18
19
17
17
17
19
19
19
19
19
19
19
19
18
14
16
15
19
17
19
17
17
17
19
17
19
19
17
16
18
18
17
17
17
16
18

result:

ok 100 numbers

Test #23:

score: 0
Accepted
time: 4905ms
memory: 4392kb

input:

100
12
1 -446217998
7 -791225517
9 73408189
11 -106337857
15 -104940040
17 62436238
18 101915123
19 634463899
22 -682278321
24 173008410
25 13330045
28 177562882
12
4 242985533
10 -69256930
12 800744571
13 66071467
14 266447106
16 -617719069
17 -336076323
18 -352901627
19 -499160520
22 424949885
24 ...

output:

23
18
29
23
26
20
23
27
18
29
27
23
25
25
20
23
29
27
27
23
23
25
24
27
29
24
23
24
27
29
21
27
24
29
27
29
29
29
27
29
24
23
27
26
25
25
19
27
29
27
26
25
23
27
23
29
29
27
22
25
27
29
21
23
25
29
26
23
24
28
25
27
25
25
22
20
27
25
26
25
27
24
26
27
22
27
27
29
29
24
27
25
27
25
22
22
23
25
21
26

result:

ok 100 numbers

Test #24:

score: -100
Time Limit Exceeded

input:

100
11
2 45805640
4 -646328719
5 207358977
6 -397475219
12 74326792
14 -720327036
17 589847619
22 131060182
23 139741592
26 2049141
27 -110705785
11
1 609352575
3 47393004
4 -79755028
5 40310136
6 606700068
7 741322213
9 -403282727
20 -189581978
21 46299345
25 457503077
27 -189306816
11
1 -127398323...

output:

23
23
28
20
29
27
23
19
27
25
19
19
23
26
26
25
27
25
23
23
27
25
25
26
25
25
25
26
24
27
26
27
27
27
27
20
27
19
25
25
27
25
29
23
26
26
18
29
25
23
25
29
25
26
27
24
21
25
27
27
27
27
27
25
26
29
25
27
29
19
29
23
23
27
27
29

result: