#line 1 "F.cpp"
#pragma GCC target("avx2,avx512f,avx512vl,avx512bw,avx512dq,avx512cd,avx512vbmi,avx512vbmi2,avx512vpopcntdq,avx512bitalg,bmi,bmi2,lzcnt,popcnt")
#pragma GCC optimize("Ofast")
#line 2 "/mnt/c/Users/tsigm/Documents/Cprogram/library/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
#define rep(i,n) for(int i=0;i<int(n);i++)
#define rep1(i,n) for(int i=1;i<=int(n);i++)
#define per(i,n) for(int i=int(n)-1;i>=0;i--)
#define per1(i,n) for(int i=int(n);i>0;i--)
#define all(c) c.begin(),c.end()
#define si(x) int(x.size())
#define pb push_back
#define eb emplace_back
#define fs first
#define sc second
template<class T> using V = vector<T>;
template<class T> using VV = vector<vector<T>>;
template<class T,class U> bool chmax(T& x, U y){
if(x<y){ x=y; return true; }
return false;
}
template<class T,class U> bool chmin(T& x, U y){
if(y<x){ x=y; return true; }
return false;
}
template<class T> void mkuni(V<T>& v){sort(all(v));v.erase(unique(all(v)),v.end());}
template<class T> int lwb(const V<T>& v, const T& a){return lower_bound(all(v),a) - v.begin();}
template<class T>
V<T> Vec(size_t a) {
return V<T>(a);
}
template<class T, class... Ts>
auto Vec(size_t a, Ts... ts) {
return V<decltype(Vec<T>(ts...))>(a, Vec<T>(ts...));
}
template<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){
return o<<"("<<p.fs<<","<<p.sc<<")";
}
template<class T> ostream& operator<<(ostream& o,const vector<T> &vc){
o<<"{";
for(const T& v:vc) o<<v<<",";
o<<"}";
return o;
}
constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); }
#ifdef LOCAL
#define show(x) cerr << "LINE" << __LINE__ << " : " << #x << " = " << (x) << endl
void dmpr(ostream& os){os<<endl;}
template<class T,class... Args>
void dmpr(ostream&os,const T&t,const Args&... args){
os<<t<<" ~ ";
dmpr(os,args...);
}
#define shows(...) cerr << "LINE" << __LINE__ << " : ";dmpr(cerr,##__VA_ARGS__)
#define dump(x) cerr << "LINE" << __LINE__ << " : " << #x << " = {"; \
for(auto v: x) cerr << v << ","; cerr << "}" << endl;
#else
#define show(x) void(0)
#define dump(x) void(0)
#define shows(...) void(0)
#endif
template<class D> D divFloor(D a, D b){
return a / b - (((a ^ b) < 0 && a % b != 0) ? 1 : 0);
}
template<class D> D divCeil(D a, D b) {
return a / b + (((a ^ b) > 0 && a % b != 0) ? 1 : 0);
}
/*
x 0 1 2 3 4 5 6 7 8 9
bsr(x) -1 0 1 1 2 2 2 2 3 3
最上位bit
*/
int bsr(int x){
return x == 0 ? -1 : 31 ^ __builtin_clz(x);
}
int bsr(uint x){
return x == 0 ? -1 : 31 ^ __builtin_clz(x);
}
int bsr(ll x){
return x == 0 ? -1 : 63 ^ __builtin_clzll(x);
}
int bsr(ull x){
return x == 0 ? -1 : 63 ^ __builtin_clzll(x);
}
/*
x 0 1 2 3 4 5 6 7 8 9
bsl(x) -1 0 1 0 2 0 1 0 3 0
最下位bit
*/
int bsl(int x){
if(x==0) return -1;
return __builtin_ctz(x);
}
int bsl(uint x){
if(x==0) return -1;
return __builtin_ctz(x);
}
int bsl(ll x){
if(x==0) return -1;
return __builtin_ctzll(x);
}
int bsl(ull x){
if(x==0) return -1;
return __builtin_ctzll(x);
}
template<class T>
T rnd(T l,T r){ //[l,r)
using D = uniform_int_distribution<T>;
static random_device rd;
static mt19937 gen(rd());
return D(l,r-1)(gen);
}
template<class T>
T rnd(T n){ //[0,n)
return rnd(T(0),n);
}
#line 5 "F.cpp"
/*
sunset's BigInt
*/
// base and base_digits must be consistent
const int base = 1000000000;
const int base_digits = 9;
struct Int {
vector<int> z;
int sign;
Int() : sign(1) {}
Int(long long v) {
*this = v;
}
Int(const string &s) {
read(s);
}
void operator=(const Int &v) {
sign = v.sign;
z = v.z;
}
void operator=(long long v) {
sign = 1;
if (v < 0) {
sign = -1, v = -v;
}
z.clear();
for (; v > 0; v = v / base) {
z.push_back(v % base);
}
}
Int operator+(const Int &v) const {
if (sign == v.sign) {
Int res = v;
for (int i = 0, carry = 0; i < (int) max(z.size(), v.z.size()) || carry; ++i) {
if (i == (int) res.z.size()) {
res.z.push_back(0);
}
res.z[i] += carry + (i < (int) z.size() ? z[i] : 0);
carry = res.z[i] >= base;
if (carry) {
res.z[i] -= base;
}
}
return res;
} else {
return *this - (-v);
}
}
Int operator-(const Int &v) const {
if (sign == v.sign) {
if (abs() >= v.abs()) {
Int res = *this;
for (int i = 0, carry = 0; i < (int) v.z.size() || carry; ++i) {
res.z[i] -= carry + (i < (int) v.z.size() ? v.z[i] : 0);
carry = res.z[i] < 0;
if (carry) {
res.z[i] += base;
}
}
res.trim();
return res;
} else {
return -(v - *this);
}
} else {
return *this + (-v);
}
}
void operator*=(int v) {
if (v < 0) {
sign = -sign, v = -v;
}
for (int i = 0, carry = 0; i < (int) z.size() || carry; ++i) {
if (i == (int) z.size()) {
z.push_back(0);
}
long long cur = (long long) z[i] * v + carry;
carry = cur / base;
z[i] = cur % base;
// asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur), "c"(base));
}
trim();
}
Int operator*(int v) const {
Int res = *this;
res *= v;
return res;
}
friend pair<Int, Int> divmod(const Int &a1, const Int &b1) {
int norm = base / (b1.z.back() + 1);
Int a = a1.abs() * norm;
Int b = b1.abs() * norm;
Int q, r;
q.z.resize(a.z.size());
for (int i = a.z.size() - 1; i >= 0; i--) {
r *= base;
r += a.z[i];
int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0;
int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0;
int d = ((long long) s1 * base + s2) / b.z.back();
r -= b * d;
while (r < 0) {
r += b, --d;
}
q.z[i] = d;
}
q.sign = a1.sign * b1.sign;
r.sign = a1.sign;
q.trim();
r.trim();
return make_pair(q, r / norm);
}
friend Int sqrt(const Int &a1) {
Int a = a1;
while (a.z.empty() || (int) a.z.size() % 2 == 1) {
a.z.push_back(0);
}
int n = a.z.size();
int firstDigit = sqrt((long long) a.z[n - 1] * base + a.z[n - 2]);
int norm = base / (firstDigit + 1);
a *= norm;
a *= norm;
while (a.z.empty() || (int) a.z.size() % 2 == 1) {
a.z.push_back(0);
}
Int r = (long long) a.z[n - 1] * base + a.z[n - 2];
firstDigit = sqrt((long long) a.z[n - 1] * base + a.z[n - 2]);
int q = firstDigit;
Int res;
for (int j = n / 2 - 1; j >= 0; j--) {
for (;; --q) {
Int r1 =
(r - (res * 2 * base + q) * q) * base * base +
(j > 0 ? (long long) a.z[2 * j - 1] * base + a.z[2 * j - 2] : 0);
if (r1 >= 0) {
r = r1;
break;
}
}
res *= base;
res += q;
if (j > 0) {
int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0;
int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0;
int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : 0;
q = ((long long) d1 * base * base + (long long) d2 * base + d3) /
(firstDigit * 2);
}
}
res.trim();
return res / norm;
}
Int operator/(const Int &v) const {
return divmod(*this, v).first;
}
Int operator%(const Int &v) const {
return divmod(*this, v).second;
}
void operator/=(int v) {
if (v < 0) {
sign = -sign, v = -v;
}
for (int i = z.size() - 1, rem = 0; i >= 0; --i) {
long long cur = z[i] + (long long) rem * base;
z[i] = cur / v;
rem = cur % v;
}
trim();
}
Int operator/(int v) const {
Int res = *this;
res /= v;
return res;
}
int operator%(int v) const {
if (v < 0) {
v = -v;
}
int m = 0;
for (int i = z.size() - 1; i >= 0; --i) {
m = ((long long) m * base + z[i]) % v;
}
return m * sign;
}
void operator+=(const Int &v) {
*this = *this + v;
}
void operator-=(const Int &v) {
*this = *this - v;
}
void operator*=(const Int &v) {
*this = *this * v;
}
void operator/=(const Int &v) {
*this = *this / v;
}
bool operator<(const Int &v) const {
if (sign != v.sign) {
return sign < v.sign;
}
if (z.size() != v.z.size()) {
return z.size() * sign < v.z.size() * v.sign;
}
for (int i = z.size() - 1; i >= 0; i--) {
if (z[i] != v.z[i]) {
return z[i] * sign < v.z[i] * sign;
}
}
return false;
}
bool operator>(const Int &v) const {
return v < *this;
}
bool operator<=(const Int &v) const {
return !(v < *this);
}
bool operator>=(const Int &v) const {
return !(*this < v);
}
bool operator==(const Int &v) const {
return !(*this < v) && !(v < *this);
}
bool operator!=(const Int &v) const {
return *this < v || v < *this;
}
void trim() {
while (!z.empty() && z.back() == 0) {
z.pop_back();
}
if (z.empty()) {
sign = 1;
}
}
bool isZero() const {
return z.empty() || ((int) z.size() == 1 && !z[0]);
}
Int operator-() const {
Int res = *this;
res.sign = -sign;
return res;
}
Int abs() const {
Int res = *this;
res.sign *= res.sign;
return res;
}
long long longValue() const {
long long res = 0;
for (int i = z.size() - 1; i >= 0; i--) {
res = res * base + z[i];
}
return res * sign;
}
friend Int gcd(const Int &a, const Int &b) {
return b.isZero() ? a : gcd(b, a % b);
}
friend Int lcm(const Int &a, const Int &b) {
return a / gcd(a, b) * b;
}
void read(const string &s) {
sign = 1;
z.clear();
int pos = 0;
while (pos < (int) s.size() && (s[pos] == '-' || s[pos] == '+')) {
if (s[pos] == '-') {
sign = -sign;
}
++pos;
}
for (int i = s.size() - 1; i >= pos; i -= base_digits) {
int x = 0;
for (int j = max(pos, i - base_digits + 1); j <= i; j++) {
x = x * 10 + s[j] - '0';
}
z.push_back(x);
}
trim();
}
friend istream &operator>>(istream &stream, Int &v) {
string s;
stream >> s;
v.read(s);
return stream;
}
friend ostream &operator<<(ostream &stream, const Int &v) {
if (v.sign == -1) {
stream << '-';
}
stream << (v.z.empty() ? 0 : v.z.back());
for (int i = v.z.size() - 2; i >= 0; --i) {
stream << setw(base_digits) << setfill('0') << v.z[i];
}
return stream;
}
static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
vector<long long> p(max(old_digits, new_digits) + 1);
p[0] = 1;
for (int i = 1; i < (int) p.size(); i++) {
p[i] = p[i - 1] * 10;
}
vector<int> res;
long long cur = 0;
int cur_digits = 0;
for (int i = 0; i < (int) a.size(); i++) {
cur += a[i] * p[cur_digits];
cur_digits += old_digits;
while (cur_digits >= new_digits) {
res.push_back(cur % p[new_digits]);
cur /= p[new_digits];
cur_digits -= new_digits;
}
}
res.push_back(cur);
while (!res.empty() && res.back() == 0) {
res.pop_back();
}
return res;
}
typedef vector<long long> vll;
static vll karatsubaMultiply(const vll &a, const vll &b) {
int n = a.size();
vll res(n + n);
if (n <= 32) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
res[i + j] += a[i] * b[j];
}
}
return res;
}
int k = n >> 1;
vll a1(a.begin(), a.begin() + k);
vll a2(a.begin() + k, a.end());
vll b1(b.begin(), b.begin() + k);
vll b2(b.begin() + k, b.end());
vll a1b1 = karatsubaMultiply(a1, b1);
vll a2b2 = karatsubaMultiply(a2, b2);
for (int i = 0; i < k; i++) {
a2[i] += a1[i];
}
for (int i = 0; i < k; i++) {
b2[i] += b1[i];
}
vll r = karatsubaMultiply(a2, b2);
for (int i = 0; i < (int) a1b1.size(); i++) {
r[i] -= a1b1[i];
}
for (int i = 0; i < (int) a2b2.size(); i++) {
r[i] -= a2b2[i];
}
for (int i = 0; i < (int) r.size(); i++) {
res[i + k] += r[i];
}
for (int i = 0; i < (int) a1b1.size(); i++) {
res[i] += a1b1[i];
}
for (int i = 0; i < (int) a2b2.size(); i++) {
res[i + n] += a2b2[i];
}
return res;
}
Int operator*(const Int &v) const {
vector<int> a6 = convert_base(this->z, base_digits, 6);
vector<int> b6 = convert_base(v.z, base_digits, 6);
vll a(a6.begin(), a6.end());
vll b(b6.begin(), b6.end());
while (a.size() < b.size()) {
a.push_back(0);
}
while (b.size() < a.size()) {
b.push_back(0);
}
while (a.size() & (a.size() - 1)) {
a.push_back(0);
b.push_back(0);
}
vll c = karatsubaMultiply(a, b);
Int res;
res.sign = sign * v.sign;
for (int i = 0, carry = 0; i < (int) c.size(); i++) {
long long cur = c[i] + carry;
res.z.push_back(cur % 1000000);
carry = cur / 1000000;
}
res.z = convert_base(res.z, 6, base_digits);
res.trim();
return res;
}
};
template<unsigned int mod_>
struct ModInt{
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
constexpr static uint mod = mod_;
uint v;
ModInt():v(0){}
ModInt(ll _v):v(normS(_v%mod+mod)){}
explicit operator bool() const {return v!=0;}
static uint normS(const uint &x){return (x<mod)?x:x-mod;} // [0 , 2*mod-1] -> [0 , mod-1]
static ModInt make(const uint &x){ModInt m; m.v=x; return m;}
ModInt operator+(const ModInt& b) const { return make(normS(v+b.v));}
ModInt operator-(const ModInt& b) const { return make(normS(v+mod-b.v));}
ModInt operator-() const { return make(normS(mod-v)); }
ModInt operator*(const ModInt& b) const { return make((ull)v*b.v%mod);}
ModInt operator/(const ModInt& b) const { return *this*b.inv();}
ModInt& operator+=(const ModInt& b){ return *this=*this+b;}
ModInt& operator-=(const ModInt& b){ return *this=*this-b;}
ModInt& operator*=(const ModInt& b){ return *this=*this*b;}
ModInt& operator/=(const ModInt& b){ return *this=*this/b;}
ModInt& operator++(int){ return *this=*this+1;}
ModInt& operator--(int){ return *this=*this-1;}
template<class T> friend ModInt operator+(T a, const ModInt& b){ return (ModInt(a) += b);}
template<class T> friend ModInt operator-(T a, const ModInt& b){ return (ModInt(a) -= b);}
template<class T> friend ModInt operator*(T a, const ModInt& b){ return (ModInt(a) *= b);}
template<class T> friend ModInt operator/(T a, const ModInt& b){ return (ModInt(a) /= b);}
ModInt pow(ll p) const {
if(p<0) return inv().pow(-p);
ModInt a = 1;
ModInt x = *this;
while(p){
if(p&1) a *= x;
x *= x;
p >>= 1;
}
return a;
}
ModInt inv() const { // should be prime
return pow(mod-2);
}
// ll extgcd(ll a,ll b,ll &x,ll &y) const{
// ll p[]={a,1,0},q[]={b,0,1};
// while(*q){
// ll t=*p/ *q;
// rep(i,3) swap(p[i]-=t*q[i],q[i]);
// }
// if(p[0]<0) rep(i,3) p[i]=-p[i];
// x=p[1],y=p[2];
// return p[0];
// }
// ModInt inv() const {
// ll x,y;
// extgcd(v,mod,x,y);
// return make(normS(x+mod));
// }
bool operator==(const ModInt& b) const { return v==b.v;}
bool operator!=(const ModInt& b) const { return v!=b.v;}
bool operator<(const ModInt& b) const { return v<b.v;}
friend istream& operator>>(istream &o,ModInt& x){
ll tmp;
o>>tmp;
x=ModInt(tmp);
return o;
}
friend ostream& operator<<(ostream &o,const ModInt& x){ return o<<x.v;}
// friend ostream& operator<<(ostream &o,const ModInt& x){
// for(int b=1;b<=100;b++){
// for(int a=-100;a<=100;a++){
// if(ModInt(a)/b == x){
// return o << a << "/" << b;
// }
// }
// }
// return o<<x.v;
// }
};
using mint = ModInt<998244353>;
/*
左c列をsweep 指定しないとc = w
行のswapはする
掃き出しに使った列の集合を返す
*/
template<class T>
vector<int> sweep(vector<vector<T>>& a, int c = -1){
if(a.empty()) return {};
if(c == -1) c = a[0].size();
int h = a.size(), w = a[0].size(), r = 0;
vector<int> used_col;
rep(i,c){
if(r == h) break;
for(int j=r;j<h;j++) if(a[j][i]){
swap(a[r],a[j]); break;
}
if(!a[r][i]) continue;
rep(j,h) if(j != r){
const T t = -a[j][i]/a[r][i];
for(int k=i;k<w;k++) a[j][k] += a[r][k]*t;
}
used_col.pb(i);
r++;
}
return used_col;
}
/*
ax = b の解のひとつを出力
解空間は (output) + ker(a)
解が存在しないなら {}
式が0個(si(a) == 0) で壊れないように変数の個数 ( = si(a[0]) ) w を与える
*/
template<class T>
vector<T> linearEquation(vector<vector<T>> a, int w, vector<T> b){
assert(a.size() == b.size());
int h = a.size();
rep(i,h) a[i].pb(b[i]);
vector<int> idx = sweep(a,w);
for(int i = idx.size();i<h;i++) if(a[i][w]) return {};
vector<T> x(w);
rep(i,idx.size()) x[idx[i]] = a[i][w] / a[i][idx[i]];
return x;
}
Int C(Int x,int i){
Int res = 1;
rep(j,i){
res *= x-j;
res /= j+1;
}
return res;
}
bool has_int_solution(vector<vector<Int>> A, vector<Int> b){
assert(si(A) == si(b));
int M = si(A);
if(M == 0) return true;
int N = si(A[0]);
auto Swap = [&](int i, int j){
rep(k,M) swap(A[k][i],A[k][j]);
};
auto sub = [&](int i, int j, Int c){
// A[*][i] -= A[*][j] * c
assert(i != j);
rep(k,M) A[k][i] -= A[k][j] * c;
};
auto flip = [&](int i){
// A[*][i] *= -1
rep(k,M) A[k][i] = -A[k][i];
};
rep(i,N) if(A[0][i] < 0) flip(i);
{
int non0 = -1;
rep(i,N) if(A[0][i] != 0) non0 = i;
if(non0 == -1){
if(b[0] != 0) return false;
vector<vector<Int>> AA(M-1,vector<Int>(N));
rep(i,M-1) rep(j,N) AA[i][j] = A[i+1][j];
vector<Int> bb(M-1);
rep(i,M-1) bb[i] = b[i+1];
return has_int_solution(AA,bb);
}
Swap(0,non0);
assert(A[0][0] != 0);
}
for(int i=1;i<N;i++){
while(A[0][i] != 0){
if(A[0][0] < A[0][i]){
Swap(0,i); continue;
}
Int q = A[0][0]/A[0][i];
sub(0,i,q);
}
}
if(b[0]%A[0][0] != 0) return false;
Int q = b[0]/A[0][0];
vector<vector<Int>> AA(M-1,vector<Int>(N-1));
rep(k,M-1) rep(i,N-1) AA[k][i] = A[k+1][i+1];
vector<Int> bb(M-1);
rep(k,M-1) bb[k] = b[k+1] - q * A[k+1][0];
return has_int_solution(AA,bb);
}
int solve(){
int M; cin >> M;
vector<Int> xs(M), ys(M);
rep(i,M) cin >> xs[i] >> ys[i];
for(int D=0;;D++){
show(D);
int N = D+1;
vector<vector<Int>> A(M,vector<Int>(N));
vector<Int> b = ys;
rep(i,M){
rep(j,N){
A[i][j] = C(xs[i],j);
}
}
{
// precheck via mint
vector<vector<mint>> mA(M,vector<mint>(N));
vector<mint> mb(M);
rep(i,M) rep(j,N) mA[i][j] = A[i][j].longValue();
rep(i,M) mb[i] = b[i].longValue();
if(linearEquation(mA,N,mb).empty()) continue;
}
if(has_int_solution(A,b)){
return D;
}
}
}
int main(){
cin.tie(0);
ios::sync_with_stdio(false); //DON'T USE scanf/printf/puts !!
cout << fixed << setprecision(20);
int T; cin >> T;
while(T--) cout << solve() << endl;
}