QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#433817#8786. The Whole Worlducup-team008#WA 0ms3628kbC++1720.2kb2024-06-08 13:35:112024-06-08 13:35:15

Judging History

你现在查看的是最新测评结果

  • [2024-06-08 13:35:15]
  • 评测
  • 测评结果:WA
  • 用时:0ms
  • 内存:3628kb
  • [2024-06-08 13:35:11]
  • 提交

answer

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <cstring>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <vector>

using namespace std;

// BEGIN NO SAD
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define trav(a, x) for(auto& a : x)
#define all(x) x.begin(), x.end()
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define eb emplace_back
#define lb lower_bound
#define ub upper_bound
typedef vector<int> vi;
#define f first
#define s second
#define derr if(0) cerr
void __print(int x) {cerr << x;}
void __print(long x) {cerr << x;}
void __print(long long x) {cerr << x;}
void __print(unsigned x) {cerr << x;}
void __print(unsigned long x) {cerr << x;}
void __print(unsigned long long x) {cerr << x;}
void __print(float x) {cerr << x;}
void __print(double x) {cerr << x;}
void __print(long double x) {cerr << x;}
void __print(char x) {cerr << '\'' << x << '\'';}
void __print(const char *x) {cerr << '\"' << x << '\"';}
void __print(const string &x) {cerr << '\"' << x << '\"';}
void __print(bool x) {cerr << (x ? "true" : "false");}

template<typename T, typename V>
void __print(const pair<T, V> &x) {cerr << '{'; __print(x.first); cerr << ", "; __print(x.second); cerr << '}';}
template<typename T>
void __print(const T &x) {int f = 0; cerr << '{'; for (auto &i: x) cerr << (f++ ? ", " : ""), __print(i); cerr << "}";}
void _print() {cerr << "]\n";}
template <typename T, typename... V>
void _print(T t, V... v) {__print(t); if (sizeof...(v)) cerr << ", "; _print(v...);}
#define debug(x...) cerr << "\e[91m"<<__func__<<":"<<__LINE__<<" [" << #x << "] = ["; _print(x); cerr << "\e[39m" << flush;
// END NO SAD

template<class Fun>
class y_combinator_result {
  Fun fun_;
public:
  template<class T>
  explicit y_combinator_result(T &&fun): fun_(std::forward<T>(fun)) {}

  template<class ...Args>
  decltype(auto) operator()(Args &&...args) {
    return fun_(std::ref(*this), std::forward<Args>(args)...);
  }
};

template<class Fun>
decltype(auto) y_combinator(Fun &&fun) {
  return y_combinator_result<std::decay_t<Fun>>(std::forward<Fun>(fun));
}

template<class T>
bool updmin(T& a, T b) {
  if(b < a) {
    a = b;
    return true;
  }
  return false;
}
template<class T>
bool updmax(T& a, T b) {
  if(b > a) {
    a = b;
    return true;
  }
  return false;
}
typedef int64_t ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef array<array<int, 2>, 2> matrix;

using cpx = complex<double>;
const double PI = acos(-1);
vector<cpx> roots = {{0, 0},
                     {1, 0}};

void ensure_capacity(int min_capacity) {
    for (int len = roots.size(); len < min_capacity; len *= 2) {
        for (int i = len >> 1; i < len; i++) {
            roots.emplace_back(roots[i]);
            double angle = 2 * PI * (2 * i + 1 - len) / (len * 2);
            roots.emplace_back(cos(angle), sin(angle));
        }
    }
}

void fft(vector<cpx> &z, bool inverse) {
    int n = z.size();
    assert((n & (n - 1)) == 0);
    ensure_capacity(n);
    for (unsigned i = 1, j = 0; i < n; i++) {
        int bit = n >> 1;
        for (; j >= bit; bit >>= 1)
            j -= bit;
        j += bit;
        if (i < j)
            swap(z[i], z[j]);
    }
    for (int len = 1; len < n; len <<= 1) {
        for (int i = 0; i < n; i += len * 2) {
            for (int j = 0; j < len; j++) {
                cpx root = inverse ? conj(roots[j + len]) : roots[j + len];
                cpx u = z[i + j];
                cpx v = z[i + j + len] * root;
                z[i + j] = u + v;
                z[i + j + len] = u - v;
            }
        }
    }
    if (inverse)
        for (int i = 0; i < n; i++)
            z[i] /= n;
}

vector<int> multiply_bigint(const vector<int> &a, const vector<int> &b, int base) {
    int need = a.size() + b.size();
    int n = 1;
    while (n < need) n <<= 1;
    vector<cpx> p(n);
    for (size_t i = 0; i < n; i++) {
        p[i] = cpx(i < a.size() ? a[i] : 0, i < b.size() ? b[i] : 0);
    }
    fft(p, false);
    // a[w[k]] = (p[w[k]] + conj(p[w[n-k]])) / 2
    // b[w[k]] = (p[w[k]] - conj(p[w[n-k]])) / (2*i)
    vector<cpx> ab(n);
    cpx r(0, -0.25);
    for (int i = 0; i < n; i++) {
        int j = (n - i) & (n - 1);
        ab[i] = (p[i] * p[i] - conj(p[j] * p[j])) * r;
    }
    fft(ab, true);
    vector<int> result(need);
    long long carry = 0;
    for (int i = 0; i < need; i++) {
        long long d = (long long) (ab[i].real() + 0.5) + carry;
        carry = d / base;
        result[i] = d % base;
    }
    return result;
}

vector<int> multiply_mod(const vector<int> &a, const vector<int> &b, int m) {
    int need = a.size() + b.size() - 1;
    int n = 1;
    while (n < need) n <<= 1;
    vector<cpx> A(n);
    for (size_t i = 0; i < a.size(); i++) {
        int x = (a[i] % m + m) % m;
        A[i] = cpx(x & ((1 << 15) - 1), x >> 15);
    }
    fft(A, false);

    vector<cpx> B(n);
    for (size_t i = 0; i < b.size(); i++) {
        int x = (b[i] % m + m) % m;
        B[i] = cpx(x & ((1 << 15) - 1), x >> 15);
    }
    fft(B, false);

    vector<cpx> fa(n);
    vector<cpx> fb(n);
    for (int i = 0, j = 0; i < n; i++, j = n - i) {
        cpx a1 = (A[i] + conj(A[j])) * cpx(0.5, 0);
        cpx a2 = (A[i] - conj(A[j])) * cpx(0, -0.5);
        cpx b1 = (B[i] + conj(B[j])) * cpx(0.5, 0);
        cpx b2 = (B[i] - conj(B[j])) * cpx(0, -0.5);
        fa[i] = a1 * b1 + a2 * b2 * cpx(0, 1);
        fb[i] = a1 * b2 + a2 * b1;
    }

    fft(fa, true);
    fft(fb, true);
    vector<int> res(need);
    for (int i = 0; i < need; i++) {
        long long aa = (long long) (fa[i].real() + 0.5);
        long long bb = (long long) (fb[i].real() + 0.5);
        long long cc = (long long) (fa[i].imag() + 0.5);
        res[i] = (aa % m + (bb % m << 15) + (cc % m << 30)) % m;
    }
    return res;
}

constexpr int digits(int base) noexcept {
    return base <= 1 ? 0 : 1 + digits(base / 10);
}

constexpr int base = 1000'000'000;
constexpr int base_digits = digits(base);

constexpr int fft_base = 10'000; // fft_base^2 * n / fft_base_digits <= 10^15 for double
constexpr int fft_base_digits = digits(fft_base);

struct bigint {
    // value == 0 is represented by empty z
    vector<int> z; // digits

    // sign == 1 <==> value >= 0
    // sign == -1 <==> value < 0
    int sign;

    bigint(long long v = 0) {
        *this = v;
    }

    bigint &operator=(long long v) {
        sign = v < 0 ? -1 : 1;
        v *= sign;
        z.clear();
        for (; v > 0; v = v / base)
            z.push_back((int) (v % base));
        return *this;
    }

    bigint(const string &s) {
        read(s);
    }

    bigint &operator+=(const bigint &other) {
        if (sign == other.sign) {
            for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) {
                if (i == z.size())
                    z.push_back(0);
                z[i] += carry + (i < other.z.size() ? other.z[i] : 0);
                carry = z[i] >= base;
                if (carry)
                    z[i] -= base;
            }
        } else if (other != 0 /* prevent infinite loop */) {
            *this -= -other;
        }
        return *this;
    }

    friend bigint operator+(bigint a, const bigint &b) {
        a += b;
        return a;
    }

    bigint &operator-=(const bigint &other) {
        if (sign == other.sign) {
            if ((sign == 1 && *this >= other) || (sign == -1 && *this <= other)) {
                for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) {
                    z[i] -= carry + (i < other.z.size() ? other.z[i] : 0);
                    carry = z[i] < 0;
                    if (carry)
                        z[i] += base;
                }
                trim();
            } else {
                *this = other - *this;
                this->sign = -this->sign;
            }
        } else {
            *this += -other;
        }
        return *this;
    }

    friend bigint operator-(bigint a, const bigint &b) {
        a -= b;
        return a;
    }

    bigint &operator*=(int v) {
        if (v < 0)
            sign = -sign, v = -v;
        for (int i = 0, carry = 0; i < z.size() || carry; ++i) {
            if (i == z.size())
                z.push_back(0);
            long long cur = (long long) z[i] * v + carry;
            carry = (int) (cur / base);
            z[i] = (int) (cur % base);
        }
        trim();
        return *this;
    }

    bigint operator*(int v) const {
        return bigint(*this) *= v;
    }

    friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1) {
        int norm = base / (b1.z.back() + 1);
        bigint a = a1.abs() * norm;
        bigint b = b1.abs() * norm;
        bigint q, r;
        q.z.resize(a.z.size());

        for (int i = (int) a.z.size() - 1; i >= 0; i--) {
            r *= base;
            r += a.z[i];
            int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0;
            int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0;
            int d = (int) (((long long) s1 * base + s2) / b.z.back());
            r -= b * d;
            while (r < 0)
                r += b, --d;
            q.z[i] = d;
        }

        q.sign = a1.sign * b1.sign;
        r.sign = a1.sign;
        q.trim();
        r.trim();
        return {q, r / norm};
    }

    friend bigint sqrt(const bigint &a1) {
        bigint a = a1;
        while (a.z.empty() || a.z.size() % 2 == 1)
            a.z.push_back(0);

        int n = a.z.size();

        int firstDigit = (int) ::sqrt((double) a.z[n - 1] * base + a.z[n - 2]);
        int norm = base / (firstDigit + 1);
        a *= norm;
        a *= norm;
        while (a.z.empty() || a.z.size() % 2 == 1)
            a.z.push_back(0);

        bigint r = (long long) a.z[n - 1] * base + a.z[n - 2];
        firstDigit = (int) ::sqrt((double) a.z[n - 1] * base + a.z[n - 2]);
        int q = firstDigit;
        bigint res;

        for (int j = n / 2 - 1; j >= 0; j--) {
            for (;; --q) {
                bigint r1 = (r - (res * 2 * base + q) * q) * base * base +
                            (j > 0 ? (long long) a.z[2 * j - 1] * base + a.z[2 * j - 2] : 0);
                if (r1 >= 0) {
                    r = r1;
                    break;
                }
            }
            res *= base;
            res += q;

            if (j > 0) {
                int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0;
                int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0;
                int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : 0;
                q = (int) (((long long) d1 * base * base + (long long) d2 * base + d3) / (firstDigit * 2));
            }
        }

        res.trim();
        return res / norm;
    }

    bigint operator/(const bigint &v) const {
        return divmod(*this, v).first;
    }

    bigint operator%(const bigint &v) const {
        return divmod(*this, v).second;
    }

    bigint &operator/=(int v) {
        if (v < 0)
            sign = -sign, v = -v;
        for (int i = (int) z.size() - 1, rem = 0; i >= 0; --i) {
            long long cur = z[i] + rem * (long long) base;
            z[i] = (int) (cur / v);
            rem = (int) (cur % v);
        }
        trim();
        return *this;
    }

    bigint operator/(int v) const {
        return bigint(*this) /= v;
    }

    int operator%(int v) const {
        if (v < 0)
            v = -v;
        int m = 0;
        for (int i = (int) z.size() - 1; i >= 0; --i)
            m = (int) ((z[i] + m * (long long) base) % v);
        return m * sign;
    }

    bigint &operator*=(const bigint &v) {
        *this = *this * v;
        return *this;
    }

    bigint &operator/=(const bigint &v) {
        *this = *this / v;
        return *this;
    }

    bigint &operator%=(const bigint &v) {
        *this = *this % v;
        return *this;
    }

    bool operator<(const bigint &v) const {
        if (sign != v.sign)
            return sign < v.sign;
        if (z.size() != v.z.size())
            return z.size() * sign < v.z.size() * v.sign;
        for (int i = (int) z.size() - 1; i >= 0; i--)
            if (z[i] != v.z[i])
                return z[i] * sign < v.z[i] * sign;
        return false;
    }

    bool operator>(const bigint &v) const {
        return v < *this;
    }

    bool operator<=(const bigint &v) const {
        return !(v < *this);
    }

    bool operator>=(const bigint &v) const {
        return !(*this < v);
    }

    bool operator==(const bigint &v) const {
        return !(*this < v) && !(v < *this);
    }

    bool operator!=(const bigint &v) const {
        return *this < v || v < *this;
    }

    void trim() {
        while (!z.empty() && z.back() == 0)
            z.pop_back();
        if (z.empty())
            sign = 1;
    }

    bool isZero() const {
        return z.empty();
    }

    friend bigint operator-(bigint v) {
        if (!v.z.empty())
            v.sign = -v.sign;
        return v;
    }

    bigint abs() const {
        return sign == 1 ? *this : -*this;
    }

    long long longValue() const {
        long long res = 0;
        for (int i = (int) z.size() - 1; i >= 0; i--)
            res = res * base + z[i];
        return res * sign;
    }

    friend bigint gcd(const bigint &a, const bigint &b) {
        return b.isZero() ? a : gcd(b, a % b);
    }

    friend bigint lcm(const bigint &a, const bigint &b) {
        return a / gcd(a, b) * b;
    }

    void read(const string &s) {
        sign = 1;
        z.clear();
        int pos = 0;
        while (pos < s.size() && (s[pos] == '-' || s[pos] == '+')) {
            if (s[pos] == '-')
                sign = -sign;
            ++pos;
        }
        for (int i = (int) s.size() - 1; i >= pos; i -= base_digits) {
            int x = 0;
            for (int j = max(pos, i - base_digits + 1); j <= i; j++)
                x = x * 10 + s[j] - '0';
            z.push_back(x);
        }
        trim();
    }

    friend istream &operator>>(istream &stream, bigint &v) {
        string s;
        stream >> s;
        v.read(s);
        return stream;
    }

    friend ostream &operator<<(ostream &stream, const bigint &v) {
        if (v.sign == -1)
            stream << '-';
        stream << (v.z.empty() ? 0 : v.z.back());
        for (int i = (int) v.z.size() - 2; i >= 0; --i)
            stream << setw(base_digits) << setfill('0') << v.z[i];
        return stream;
    }

    static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
        vector<long long> p(max(old_digits, new_digits) + 1);
        p[0] = 1;
        for (int i = 1; i < p.size(); i++)
            p[i] = p[i - 1] * 10;
        vector<int> res;
        long long cur = 0;
        int cur_digits = 0;
        for (int v : a) {
            cur += v * p[cur_digits];
            cur_digits += old_digits;
            while (cur_digits >= new_digits) {
                res.push_back(int(cur % p[new_digits]));
                cur /= p[new_digits];
                cur_digits -= new_digits;
            }
        }
        res.push_back((int) cur);
        while (!res.empty() && res.back() == 0)
            res.pop_back();
        return res;
    }

    bigint operator*(const bigint &v) const {
        if (min(z.size(), v.z.size()) < 200)
            return mul_simple(v);
        bigint res;
        res.sign = sign * v.sign;
        res.z = multiply_bigint(convert_base(z, base_digits, fft_base_digits),
                                convert_base(v.z, base_digits, fft_base_digits), fft_base);
        res.z = convert_base(res.z, fft_base_digits, base_digits);
        res.trim();
        return res;
    }

    bigint mul_simple(const bigint &v) const {
        bigint res;
        res.sign = sign * v.sign;
        res.z.resize(z.size() + v.z.size());
        for (int i = 0; i < z.size(); ++i)
            if (z[i])
                for (int j = 0, carry = 0; j < v.z.size() || carry; ++j) {
                    long long cur = res.z[i + j] + (long long) z[i] * (j < v.z.size() ? v.z[j] : 0) + carry;
                    carry = (int) (cur / base);
                    res.z[i + j] = (int) (cur % base);
                }
        res.trim();
        return res;
    }
};

int phi(int n) {
  int r = n;
  for(int i = 2; i <= n; i++) {
    if(n%i==0) {
      while(n%i==0) n /= i;
      r -= r/i;
    }
  }
  return r;
}

const array<int, 2> ZERO = {0, 0};
vector<int> primes;
bool isprime(int n) {
  if(n < 2) return false;
  for(int i = 2; i*i <= n; i++) {
    if(n%i == 0) return false;
  }
  return true;
}
ll modpow(ll b, ll e, ll m) {
  ll ret = 1;
  for(; e; e >>= 1) {
    if(e & 1) ret = 1LL * ret * b % m;
    b = 1LL * b * b % m;
  }
  return ret;
}

void rsolve() {
  int n;
  cin >> n;
  vector<array<int, 2>> v(n);
  for(auto& x: v) cin >> x[0] >> x[1];
  sort(all(v));
  int x = v[0][0];
  int y = v[0][1];
  for(auto& z: v) {
    z[0] -= x;
    z[1] -= y;
  }
  {
    bool allzero = true;
    for(auto [x, y]: v) {
      if(y != 0) allzero = false;
    }
    if(allzero) {
      cout << "0\n";
      return;
    }
  }
  v.erase(v.begin());
  for(int d = 1; d <= v.back()[0]; d++) {
    bool valid = true;
    for(int candp = 2; candp <= 30; candp++) {
      vector<vector<ll>> mat(sz(v));
      for(auto& x: mat) x.resize(d+1);
      for(int i = 0; i < sz(v); i++) {
        for(int j = 0; j < d; j++) {
          bigint curr = 1;
          for(int a = 0; a <= j; a++) {
            curr *= v[i][0] - j + a;
          }
          for(int a = 2; a <= j+1; a++) {
            curr /= a;
          }
          mat[i][j] = curr % candp;
        }
        mat[i].back() = v[i][1] % candp;
      }
      int rnk = 0;
      int col = 0;
      while(col < d && rnk < sz(mat)) {
        for(int i = rnk; i < sz(mat); i++) {
          if(mat[i][col]) {
            if(i != rnk) {
              swap(mat[rnk], mat[i]);
            }
          }
        }
        if(mat[rnk][col] == 0) {
          col++;
          continue;
        }
        // normalize
        int other = mat[rnk][col] / gcd(mat[rnk][col], candp);
        int invscale = modpow(other, phi(candp) - 1, candp);
        for(int j = 0; j < sz(mat[rnk]); j++) {
          mat[rnk][j] *= invscale;
          mat[rnk][j] %= candp;
        }
        // not guaranteed
        // assert(mat[rnk][col] == 1);
        for(int i = 0; i < sz(mat); i++) {
          if(i == rnk) continue;
          ll scale = -mat[i][col];
          for(int j = 0; j < sz(mat[i]); j++) {
            mat[i][j] += scale * mat[rnk][j];
            mat[i][j] %= candp;
            if(mat[i][j] < 0) mat[i][j] += candp;
          }
          // also not guaranteed
          // assert(mat[i][col] == 0);
        }
        rnk++;
      }
      for(int i = rnk; valid && i < sz(mat); i++) {
        for(int j = 0; valid && j < sz(mat[i]); j++) {
          if(j + 1 < sz(mat[i])) {
            assert(mat[i][j] == 0);
          }
          else if(mat[i][j] != 0) {
            assert(j == sz(mat[i]) - 1);
            valid = false;
          }
        }
      }
      if(!valid) break;
    }
    if(valid) {
      cout << d << "\n";
      return;
    }
  }
  cout << (v.back()[0]+1) << "\n";
}
void solve() {
  for(int i = 2; i <= 29; i++) if(isprime(i)) primes.pb(i);
  int t;
  cin >> t;
  while(t--) rsolve();
}

// what would chika do
// are there edge cases (N=1?)
// are array sizes proper (scaled by proper constant, for example 2* for koosaga tree)
// integer overflow?
// DS reset properly between test cases
// are you doing geometry in floating points
// are you not using modint when you should

int main() {
  ios_base::sync_with_stdio(false);
  cin.tie(NULL);
  solve();
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3568kb

input:

2
2
1 0
4 1
3
1 1
4 4
6 6

output:

3
1

result:

ok 2 number(s): "3 1"

Test #2:

score: -100
Wrong Answer
time: 0ms
memory: 3628kb

input:

2
2
1 0
4 1
3
1 0
3 0
5 4

output:

3
2

result:

wrong answer 2nd numbers differ - expected: '3', found: '2'