QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#430621 | #8779. Square of Triangles | ucup-team3215 | WA | 362ms | 3764kb | C++20 | 4.6kb | 2024-06-04 04:05:00 | 2024-06-04 04:05:01 |
Judging History
answer
#include <algorithm>
#include <array>
#include <cmath>
#include <iostream>
#include <vector>
using namespace std;
using fp = long double;
using P = array<fp, 2>;
__float128 sqrt(__float128 x) { return sqrt((long double)x); }
__float128 abs(__float128 x) { return x > 0? x: -x; }
P operator+(P a, P b) { return {a[0] + b[0], a[1] + b[1]}; }
P operator-(P a, P b) { return {a[0] - b[0], a[1] - b[1]}; }
P operator*(fp a, P b) { return {a * b[0], a * b[1]}; }
fp operator&(P a, P b) { return a[0] * b[0] + a[1] * b[1]; }
fp operator^(P a, P b) { return a[0] * b[1] - a[1] * b[0]; }
fp sqr(P a) { return a & a; }
fp sin(P a, P b) { return (a ^ b) / sqrt(sqr(a) * sqr(b)); }
P ccw(P a) { return {-a[1], a[0]}; }
array<P, 2> cic(P a, P b, fp ra, fp rb) {
P v = b - a;
fp d2 = sqr(v), sum = ra + rb, dif = ra - rb, p = (d2 + ra * ra - rb * rb) / d2 / 2, h2 = ra * ra - p * p * d2;
P mid = a + p * v, per = sqrt(max(h2, {}) / d2) * ccw(v);
return {mid + per, mid - per};
}
vector<P> collapse(vector<P> fig) {
for (int i = 0; i < fig.size(); ++i) {
int n = fig.size();
auto a = fig[(i + n - 1) % n], b = fig[i], c = fig[(i + 1) % n];
if (abs(sin(a - b, c - b)) < 1e-14) {
if (abs(sqr(a - b) / sqr(c - b) - 1) > 1e-14 || (a - b & c - b) < 0) fig.erase(fig.begin() + i);
else fig.erase(fig.begin() + i - !!i, fig.begin() + i + !i + 1);
i = -1;
}
}
return fig;
}
fp area;
bool square(vector<P> fig, vector<array<fp, 3>> tri) {
fig = collapse(fig);
if (fig.size() > 4 + (tri.size() == 1)) return 0;
if (tri.empty()) return fig.size() == 4 && max({abs(sin(fig[1] - fig[0], fig[3] - fig[2])), abs(sin(fig[2] - fig[1], fig[3] - fig[0])), abs(sin(fig[2] - fig[1], fig[1] - fig[0]) + 1)}) < 1e-14 && abs((fig[2] - fig[1] ^ fig[1] - fig[0]) / area + 1) < 1e-14;
if (fig.empty()) {
P a{};
P b{tri[3][0]};
auto ntri = tri;
ntri.erase(ntri.begin() + 3);
if (square({a, b, cic(a, b, tri[3][1], tri[3][2])[0]}, ntri)) return 1;
return 0;
}
for (int i = 0; i < tri.size(); ++i) if (!i || tri[i] != tri[i - 1])
for (int j = 3; j--; ) if (!j || tri[i][j] != tri[i][j - 1])
for (int k = fig.size(); k--; ) if (P a = fig[k], b = fig[(k + fig.size() - 1) % fig.size()],
c = fig[(k + fig.size() - 2) % fig.size()], d = fig[(k + 1) % fig.size()]; abs(tri[i][j] / sqrt(sqr(a - b)) - 1) < 1e-14)
for (int j0 = 3; j0--; ) if (int j1 = 3 - j - j0; j != j0 && j0 > j1 || tri[i][j0] != tri[i][j1]) {
auto ntri = tri;
ntri.erase(ntri.begin() + i);
auto nfig = fig;
auto np = cic(a, b, tri[i][j0], tri[i][j1])[0];
if (sin(a - b, c - b) < 0 && sin(np - b, c - b) > 1e-14) continue;
if (sin(b - a, d - a) > 0 && sin(np - a, d - a) > 1e-14) continue;
nfig.insert(nfig.begin() + k, np);
if (square(nfig, ntri)) return 1;
}
for (int i = 0; i < tri.size(); ++i) if (!i || tri[i] != tri[i - 1])
for (int j = 3; j--; ) if (!j || tri[i][j] != tri[i][j - 1])
for (int k = fig.size(); k--; ) if (P a = fig[k], b = fig[(k + fig.size() - 1) % fig.size()],
c = fig[(k + fig.size() - 2) % fig.size()], d = fig[(k + 1) % fig.size()]; tri[i][j] / sqrt(sqr(a - b)) - 1 < -1e-14)
for (int j0 = 3; j0--; ) if (int j1 = 3 - j - j0; j != j0 && j0 > j1 || tri[i][j0] != tri[i][j1])
for (auto w: {0, 1}) {
auto ntri = tri;
ntri.erase(ntri.begin() + i);
auto nfig = fig;
if (w) {
auto tp = b + tri[i][j] / sqrt(sqr(a - b)) * (a - b);
auto np = cic(tp, b, tri[i][j0], tri[i][j1])[0];
if (sin(a - b, c - b) < 0 && sin(np - b, c - b) > 1e-14) continue;
if (sin(b - a, d - a) > 0 && sin(np - a, d - a) > 1e-14) continue;
nfig.insert(nfig.begin() + k, tp);
nfig.insert(nfig.begin() + k, np);
if (square(nfig, ntri)) return 1;
} else {
auto tp = a + tri[i][j] / sqrt(sqr(a - b)) * (b - a);
auto np = cic(a, tp, tri[i][j0], tri[i][j1])[0];
if (sin(a - b, c - b) < 0 && sin(np - b, c - b) > 1e-14) continue;
if (sin(b - a, d - a) > 0 && sin(np - a, d - a) > 1e-14) continue;
nfig.insert(nfig.begin() + k, np);
nfig.insert(nfig.begin() + k, tp);
if (square(nfig, ntri)) return 1;
}
}
return 0;
}
int main() {
for (int tc = (cin >> tc, tc); tc--; area = 0) {
vector<array<fp, 3>> tri(4);
for (int i = 12, x; i--; ) cin >> x, tri[0][i] = sqrt((fp)x);
for (auto& v: tri) {
sort(v.begin(), v.end());
area += abs(v[0] * cic({}, {v[0]}, v[1], v[2])[0][1]) / 2;
}
sort(tri.begin(), tri.end());
cout << square({}, tri) << '\n';
}
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 5ms
memory: 3576kb
input:
3 1 1 2 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 5 125 130 125 20 145 45 130 145 145 145 80
output:
1 0 1
result:
ok 3 lines
Test #2:
score: -100
Wrong Answer
time: 362ms
memory: 3764kb
input:
20 1998001 7984010 9982009 1998001 7984010 1994005 7984010 9978013 9982009 9978013 1994005 7984010 9958045 7968034 9962037 7968034 1994005 9962037 9958045 1990013 7968034 1994005 1990013 7968034 7952074 9938097 1986025 7952074 9942085 1990013 7952074 9942085 9938097 1986025 7952074 1990013 7936130 9...
output:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
wrong answer 1st lines differ - expected: '1', found: '0'