QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#426457 | #6325. Peaceful Results | zyz07 | AC ✓ | 237ms | 100392kb | C++17 | 28.9kb | 2024-05-31 12:05:15 | 2024-05-31 12:05:16 |
Judging History
answer
#include <bits/stdc++.h>
#include <algorithm>
#include <array>
#include <cassert>
#include <type_traits>
#include <vector>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#if __cplusplus >= 202002L
#include <bit>
#endif
namespace atcoder {
namespace internal {
#if __cplusplus >= 202002L
using std::bit_ceil;
#else
unsigned int bit_ceil(unsigned int n) {
unsigned int x = 1;
while (x < (unsigned int)(n)) x *= 2;
return x;
}
#endif
int countr_zero(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
constexpr int countr_zero_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
template <class mint,
int g = internal::primitive_root<mint::mod()>,
internal::is_static_modint_t<mint>* = nullptr>
struct fft_info {
static constexpr int rank2 = countr_zero_constexpr(mint::mod() - 1);
std::array<mint, rank2 + 1> root; // root[i]^(2^i) == 1
std::array<mint, rank2 + 1> iroot; // root[i] * iroot[i] == 1
std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;
std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;
std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;
std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;
fft_info() {
root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
iroot[rank2] = root[rank2].inv();
for (int i = rank2 - 1; i >= 0; i--) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
}
};
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
int n = int(a.size());
int h = internal::countr_zero((unsigned int)n);
static const fft_info<mint> info;
int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
for (int s = 0; s < (1 << len); s++) {
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
if (s + 1 != (1 << len))
rot *= info.rate2[countr_zero(~(unsigned int)(s))];
}
len++;
} else {
int p = 1 << (h - len - 2);
mint rot = 1, imag = info.root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto mod2 = 1ULL * mint::mod() * mint::mod();
auto a0 = 1ULL * a[i + offset].val();
auto a1 = 1ULL * a[i + offset + p].val() * rot.val();
auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();
auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();
auto a1na3imag =
1ULL * mint(a1 + mod2 - a3).val() * imag.val();
auto na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
if (s + 1 != (1 << len))
rot *= info.rate3[countr_zero(~(unsigned int)(s))];
}
len += 2;
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
int n = int(a.size());
int h = internal::countr_zero((unsigned int)n);
static const fft_info<mint> info;
int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
for (int s = 0; s < (1 << (len - 1)); s++) {
int offset = s << (h - len + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mint::mod() + l.val() - r.val()) *
irot.val();
;
}
if (s + 1 != (1 << (len - 1)))
irot *= info.irate2[countr_zero(~(unsigned int)(s))];
}
len--;
} else {
int p = 1 << (h - len);
mint irot = 1, iimag = info.iroot[2];
for (int s = 0; s < (1 << (len - 2)); s++) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
auto a0 = 1ULL * a[i + offset + 0 * p].val();
auto a1 = 1ULL * a[i + offset + 1 * p].val();
auto a2 = 1ULL * a[i + offset + 2 * p].val();
auto a3 = 1ULL * a[i + offset + 3 * p].val();
auto a2na3iimag =
1ULL *
mint((mint::mod() + a2 - a3) * iimag.val()).val();
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] =
(a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();
a[i + offset + 2 * p] =
(a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) *
irot2.val();
a[i + offset + 3 * p] =
(a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) *
irot3.val();
}
if (s + 1 != (1 << (len - 2)))
irot *= info.irate3[countr_zero(~(unsigned int)(s))];
}
len -= 2;
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_naive(const std::vector<mint>& a,
const std::vector<mint>& b) {
int n = int(a.size()), m = int(b.size());
std::vector<mint> ans(n + m - 1);
if (n < m) {
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {
ans[i + j] += a[i] * b[j];
}
}
} else {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i + j] += a[i] * b[j];
}
}
}
return ans;
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for (int i = 0; i < z; i++) {
a[i] *= b[i];
}
internal::butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
} // namespace internal
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
assert((mint::mod() - 1) % z == 0);
if (std::min(n, m) <= 60) return convolution_naive(a, b);
return internal::convolution_fft(a, b);
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(const std::vector<mint>& a,
const std::vector<mint>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
assert((mint::mod() - 1) % z == 0);
if (std::min(n, m) <= 60) return convolution_naive(a, b);
return internal::convolution_fft(a, b);
}
template <unsigned int mod = 998244353,
class T,
std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
using mint = static_modint<mod>;
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
assert((mint::mod() - 1) % z == 0);
std::vector<mint> a2(n), b2(m);
for (int i = 0; i < n; i++) {
a2[i] = mint(a[i]);
}
for (int i = 0; i < m; i++) {
b2[i] = mint(b[i]);
}
auto c2 = convolution(std::move(a2), std::move(b2));
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
c[i] = c2[i].val();
}
return c;
}
std::vector<long long> convolution_ll(const std::vector<long long>& a,
const std::vector<long long>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 =
internal::inv_gcd(MOD2 * MOD3, MOD1).second;
static constexpr unsigned long long i2 =
internal::inv_gcd(MOD1 * MOD3, MOD2).second;
static constexpr unsigned long long i3 =
internal::inv_gcd(MOD1 * MOD2, MOD3).second;
static constexpr int MAX_AB_BIT = 24;
static_assert(MOD1 % (1ull << MAX_AB_BIT) == 1, "MOD1 isn't enough to support an array length of 2^24.");
static_assert(MOD2 % (1ull << MAX_AB_BIT) == 1, "MOD2 isn't enough to support an array length of 2^24.");
static_assert(MOD3 % (1ull << MAX_AB_BIT) == 1, "MOD3 isn't enough to support an array length of 2^24.");
assert(n + m - 1 <= (1 << MAX_AB_BIT));
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
long long diff =
c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5] = {
0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
} // namespace atcoder
using namespace std;
#define For(Ti,Ta,Tb) for(auto Ti=(Ta);Ti<=(Tb);++Ti)
#define Dec(Ti,Ta,Tb) for(auto Ti=(Ta);Ti>=(Tb);--Ti)
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define range(Tx) begin(Tx),end(Tx)
using ll=long long;
const int N=1.5e6+5,tot=9,Mod=998244353;
ll fac[N],inv[N],ifac[N];
void init_fac(){
fac[0]=1;
For(i,1,N-1) fac[i]=fac[i-1]*i%Mod;
inv[1]=1;
For(i,2,N-1) inv[i]=(Mod-Mod/i)*inv[Mod%i]%Mod;
ifac[0]=ifac[1]=1;
For(i,2,N-1) ifac[i]=ifac[i-1]*inv[i]%Mod;
}
int tid,T,n,a[3][3],res[9];
double M[9][10];
void gauss(){
for(int r=0,c=0;r<tot&&c<tot;){
if(abs(M[r][c])<=1e-9){
For(i,r+1,tot-1){
if(abs(M[i][c])>1e-9){
swap_ranges(M[r],M[r]+tot+1,M[i]);
break;
}
}
}
if(abs(M[r][c])<=1e-9){
++c;
continue;
}
double inv=1/M[r][c];
For(i,c,tot){
M[r][i]*=inv;
}
For(i,r+1,tot-1){
double x=M[i][c];
Dec(j,tot,c){
M[i][j]-=x*M[r][j];
}
}
++r;
}
}
bool out(int x){
return x<0||x>n;
}
int main(){
cin.tie(nullptr)->sync_with_stdio(false);
init_fac();
T=1;
while(T--){
cin>>n;
memset(M,0,sizeof(M));
For(i,0,2){
For(j,0,2){
cin>>a[i][j];
M[i*3+j][9]=a[i][j];
}
}
M[0][0]=M[0][1]=M[0][6]=1;
M[1][2]=M[1][3]=M[1][7]=1;
M[2][4]=M[2][5]=M[2][8]=1;
M[3][2]=M[3][4]=M[3][6]=1;
M[4][0]=M[4][5]=M[4][7]=1;
M[5][1]=M[5][3]=M[5][8]=1;
M[6][3]=M[6][5]=M[6][6]=1;
M[7][1]=M[7][4]=M[7][7]=1;
M[8][0]=M[8][2]=M[8][8]=1;
gauss();
if(abs(int(round(M[6][9]))-M[6][9])>1e-9){
cout<<"0\n";
continue;
}
For(i,0,9){
M[5][i]*=2;
}
For(i,0,8){
res[i]=round(M[i][9]);
}
if((res[5]+res[6])%2){
cout<<"0\n";
continue;
}
res[5]=(res[5]+res[6])/2;
vector<int> v5(n+1),v8(n+1);
For(x8,0,n){
int x7=x8+res[6],x6=x8+res[5];
if(out(x6)||out(x7)) continue;
v8[x8]=ifac[x8]*ifac[x7]%Mod*ifac[x6]%Mod;
}
For(x5,0,n){
int x2=res[2]-res[4]-res[5]+x5;
int x1=res[1]-res[5]+res[6]+x5;
if(out(x1)||out(x2)) continue;
v5[x5]=ifac[x5]*ifac[x2]%Mod*ifac[x1]%Mod;
}
vector<int> f=atcoder::convolution<Mod>(v5,v8);
ll ans=0;
For(xs,0,n){
int x4=res[4]-xs;
int x3=res[3]+res[4]+res[5]-res[6]-xs;
int x0=res[0]-res[1]-res[6]-xs;
if(out(x0)||out(x3)||out(x4)) continue;
(ans+=ifac[x4]*ifac[x3]%Mod*ifac[x0]%Mod*f[xs])%=Mod;
}
cout<<ans*fac[n]%Mod<<'\n';
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 25ms
memory: 38972kb
input:
2 2 0 0 1 1 0 1 0 1
output:
2
result:
ok 1 number(s): "2"
Test #2:
score: 0
Accepted
time: 24ms
memory: 38968kb
input:
3 0 1 2 3 0 0 1 1 1
output:
0
result:
ok 1 number(s): "0"
Test #3:
score: 0
Accepted
time: 64ms
memory: 53052kb
input:
333333 111111 111111 111111 111111 111111 111111 111111 111111 111111
output:
383902959
result:
ok 1 number(s): "383902959"
Test #4:
score: 0
Accepted
time: 229ms
memory: 100312kb
input:
1500000 500000 500000 500000 500000 500000 500000 500000 500000 500000
output:
355543262
result:
ok 1 number(s): "355543262"
Test #5:
score: 0
Accepted
time: 229ms
memory: 100256kb
input:
1499999 499999 499999 500001 499999 499999 500001 499999 499999 500001
output:
934301164
result:
ok 1 number(s): "934301164"
Test #6:
score: 0
Accepted
time: 216ms
memory: 100392kb
input:
1500000 1 0 1499999 1499999 1 0 0 1499999 1
output:
1500000
result:
ok 1 number(s): "1500000"
Test #7:
score: 0
Accepted
time: 228ms
memory: 100336kb
input:
1499999 0 749999 750000 750000 0 749999 749999 750000 0
output:
713966599
result:
ok 1 number(s): "713966599"
Test #8:
score: 0
Accepted
time: 17ms
memory: 38832kb
input:
1 1 0 0 0 0 1 0 1 0
output:
1
result:
ok 1 number(s): "1"
Test #9:
score: 0
Accepted
time: 24ms
memory: 38816kb
input:
1 0 1 0 0 1 0 0 1 0
output:
1
result:
ok 1 number(s): "1"
Test #10:
score: 0
Accepted
time: 12ms
memory: 38984kb
input:
1 0 0 1 1 0 0 1 0 0
output:
0
result:
ok 1 number(s): "0"
Test #11:
score: 0
Accepted
time: 231ms
memory: 100200kb
input:
1499999 500000 500000 499999 499999 499999 500001 499999 499999 500001
output:
617065435
result:
ok 1 number(s): "617065435"
Test #12:
score: 0
Accepted
time: 8ms
memory: 38972kb
input:
2 1 1 0 0 0 2 0 0 2
output:
0
result:
ok 1 number(s): "0"
Test #13:
score: 0
Accepted
time: 236ms
memory: 100324kb
input:
1500000 500000 500001 499999 499999 500000 500001 499999 500000 500001
output:
925862004
result:
ok 1 number(s): "925862004"
Test #14:
score: 0
Accepted
time: 131ms
memory: 67056kb
input:
629197 210878 201408 216911 145293 266423 217481 194751 220179 214267
output:
447295633
result:
ok 1 number(s): "447295633"
Test #15:
score: 0
Accepted
time: 125ms
memory: 65952kb
input:
579097 200209 204257 174631 149110 148890 281097 138034 263752 177311
output:
71830925
result:
ok 1 number(s): "71830925"
Test #16:
score: 0
Accepted
time: 69ms
memory: 53316kb
input:
354224 100316 63899 190009 69306 123829 161089 140523 76088 137613
output:
44852283
result:
ok 1 number(s): "44852283"
Test #17:
score: 0
Accepted
time: 226ms
memory: 94980kb
input:
1229851 383009 323934 522908 551226 311238 367387 547622 353128 329101
output:
39721313
result:
ok 1 number(s): "39721313"
Test #18:
score: 0
Accepted
time: 138ms
memory: 71484kb
input:
858452 195309 312080 351063 384805 51797 421850 200466 301164 356822
output:
506491992
result:
ok 1 number(s): "506491992"
Test #19:
score: 0
Accepted
time: 230ms
memory: 98852kb
input:
1424218 661653 323895 438670 467846 488045 468327 369769 343207 711242
output:
782021141
result:
ok 1 number(s): "782021141"
Test #20:
score: 0
Accepted
time: 221ms
memory: 92040kb
input:
1079733 333391 427895 318447 579853 153924 345956 406031 300755 372947
output:
111229812
result:
ok 1 number(s): "111229812"
Test #21:
score: 0
Accepted
time: 103ms
memory: 65764kb
input:
572270 168517 197624 206129 238722 154914 178634 192692 145891 233687
output:
93444378
result:
ok 1 number(s): "93444378"
Test #22:
score: 0
Accepted
time: 71ms
memory: 55712kb
input:
470911 95201 196020 179690 143795 173744 153372 142604 154489 173818
output:
629148200
result:
ok 1 number(s): "629148200"
Test #23:
score: 0
Accepted
time: 61ms
memory: 56620kb
input:
514907 142312 117185 255410 52426 249434 213047 180346 59381 275180
output:
497502651
result:
ok 1 number(s): "497502651"
Test #24:
score: 0
Accepted
time: 69ms
memory: 54536kb
input:
406588 151239 177967 77382 93189 144948 168451 94378 135309 176901
output:
790871601
result:
ok 1 number(s): "790871601"
Test #25:
score: 0
Accepted
time: 53ms
memory: 45748kb
input:
175290 55982 60345 58963 48359 77923 49008 23679 74616 76995
output:
123245869
result:
ok 1 number(s): "123245869"
Test #26:
score: 0
Accepted
time: 231ms
memory: 98144kb
input:
1387914 512757 474809 400348 378268 216654 792992 649332 374567 364015
output:
676034326
result:
ok 1 number(s): "676034326"
Test #27:
score: 0
Accepted
time: 120ms
memory: 69600kb
input:
764222 219470 230830 313922 331893 97293 335036 97220 292440 374562
output:
158682546
result:
ok 1 number(s): "158682546"
Test #28:
score: 0
Accepted
time: 132ms
memory: 69252kb
input:
753135 242199 294626 216310 175239 287120 290776 282985 150249 319901
output:
971077263
result:
ok 1 number(s): "971077263"
Test #29:
score: 0
Accepted
time: 124ms
memory: 72408kb
input:
907648 254368 314623 338657 266634 210330 430684 203259 377229 327160
output:
657924076
result:
ok 1 number(s): "657924076"
Test #30:
score: 0
Accepted
time: 124ms
memory: 69012kb
input:
734407 287960 273092 173355 91803 383817 258787 317856 268839 147712
output:
302163640
result:
ok 1 number(s): "302163640"
Test #31:
score: 0
Accepted
time: 122ms
memory: 70164kb
input:
802408 296016 284435 221957 207041 242882 352485 117792 274366 410250
output:
54247530
result:
ok 1 number(s): "54247530"
Test #32:
score: 0
Accepted
time: 133ms
memory: 65740kb
input:
562487 158889 225035 178563 148413 302399 111675 148133 215119 199235
output:
169658542
result:
ok 1 number(s): "169658542"
Test #33:
score: 0
Accepted
time: 135ms
memory: 74156kb
input:
999120 389537 311486 298097 316708 332443 349969 261915 402318 334887
output:
352258886
result:
ok 1 number(s): "352258886"
Test #34:
score: 0
Accepted
time: 230ms
memory: 98572kb
input:
1409159 427245 484076 497838 435890 528804 444465 588832 314386 505941
output:
887383005
result:
ok 1 number(s): "887383005"
Test #35:
score: 0
Accepted
time: 128ms
memory: 74328kb
input:
1003619 340241 274051 389327 166457 383901 453261 211841 434615 357163
output:
353962733
result:
ok 1 number(s): "353962733"
Test #36:
score: 0
Accepted
time: 24ms
memory: 39408kb
input:
22574 9246 5094 8234 9209 7482 5883 12089 6331 4154
output:
60839910
result:
ok 1 number(s): "60839910"
Test #37:
score: 0
Accepted
time: 231ms
memory: 98672kb
input:
1415532 478588 564750 372194 512789 526677 376066 217017 566262 632253
output:
625939628
result:
ok 1 number(s): "625939628"
Test #38:
score: 0
Accepted
time: 118ms
memory: 67604kb
input:
662723 241713 270544 150466 205318 236372 221033 329239 165257 168227
output:
186211005
result:
ok 1 number(s): "186211005"
Test #39:
score: 0
Accepted
time: 237ms
memory: 92396kb
input:
1096822 586933 218335 291554 392825 346250 357747 326051 392267 378504
output:
128569855
result:
ok 1 number(s): "128569855"
Test #40:
score: 0
Accepted
time: 225ms
memory: 95312kb
input:
1246485 277064 449274 520147 467862 333900 444723 590215 427647 228623
output:
695555486
result:
ok 1 number(s): "695555486"
Test #41:
score: 0
Accepted
time: 69ms
memory: 53260kb
input:
351715 120661 101781 129273 142995 80157 128563 169330 148880 33505
output:
466480620
result:
ok 1 number(s): "466480620"
Test #42:
score: 0
Accepted
time: 120ms
memory: 72440kb
input:
905498 381722 200474 323302 202271 344030 359197 350698 364396 190404
output:
346377686
result:
ok 1 number(s): "346377686"
Test #43:
score: 0
Accepted
time: 224ms
memory: 91780kb
input:
1064626 261709 325862 477055 516569 367130 180927 307746 452237 304643
output:
557495758
result:
ok 1 number(s): "557495758"
Test #44:
score: 0
Accepted
time: 16ms
memory: 38744kb
input:
494104 224009 132488 137607 15527 180865 297712 203418 197294 93392
output:
0
result:
ok 1 number(s): "0"
Test #45:
score: 0
Accepted
time: 18ms
memory: 38832kb
input:
1153008 315731 708637 128640 128519 347757 676732 267014 535519 350475
output:
0
result:
ok 1 number(s): "0"
Test #46:
score: 0
Accepted
time: 237ms
memory: 99748kb
input:
1470490 550743 481409 438338 763576 96662 610252 363836 262517 844137
output:
964914867
result:
ok 1 number(s): "964914867"
Test #47:
score: 0
Accepted
time: 79ms
memory: 55880kb
input:
476270 72377 235854 168039 1528 311122 163620 254184 15707 206379
output:
0
result:
ok 1 number(s): "0"
Test #48:
score: 0
Accepted
time: 18ms
memory: 38820kb
input:
787189 201940 129464 455785 243491 290356 253342 257543 326980 202666
output:
0
result:
ok 1 number(s): "0"
Test #49:
score: 0
Accepted
time: 12ms
memory: 38764kb
input:
1311581 662049 427399 222133 182392 768551 360638 257311 534768 519502
output:
0
result:
ok 1 number(s): "0"
Test #50:
score: 0
Accepted
time: 44ms
memory: 46704kb
input:
215077 105142 95920 14015 37417 106030 71630 97785 86292 31000
output:
0
result:
ok 1 number(s): "0"
Test #51:
score: 0
Accepted
time: 12ms
memory: 38740kb
input:
680614 190222 59142 431250 229277 326583 124754 244226 267501 168887
output:
0
result:
ok 1 number(s): "0"
Test #52:
score: 0
Accepted
time: 25ms
memory: 38808kb
input:
599441 163256 359629 76556 269072 153998 176371 296850 273987 28604
output:
0
result:
ok 1 number(s): "0"
Test #53:
score: 0
Accepted
time: 25ms
memory: 38776kb
input:
1186565 664884 314828 206853 50093 597130 539342 352770 117639 716156
output:
0
result:
ok 1 number(s): "0"
Test #54:
score: 0
Accepted
time: 25ms
memory: 38744kb
input:
399589 160429 157151 82009 52807 151045 195737 168413 46646 184530
output:
0
result:
ok 1 number(s): "0"
Test #55:
score: 0
Accepted
time: 75ms
memory: 56116kb
input:
498263 277597 129082 91584 146928 169294 182041 198001 220974 79288
output:
20392590
result:
ok 1 number(s): "20392590"
Test #56:
score: 0
Accepted
time: 228ms
memory: 96164kb
input:
1287548 598441 439788 249319 532780 427274 327494 984985 96121 206442
output:
157485795
result:
ok 1 number(s): "157485795"
Test #57:
score: 0
Accepted
time: 21ms
memory: 38824kb
input:
1435275 447804 724373 263098 383152 619901 432222 383304 68399 983572
output:
0
result:
ok 1 number(s): "0"
Test #58:
score: 0
Accepted
time: 14ms
memory: 38820kb
input:
699090 240262 213752 245076 255039 260728 183323 234619 115480 348991
output:
0
result:
ok 1 number(s): "0"
Test #59:
score: 0
Accepted
time: 25ms
memory: 38976kb
input:
972438 478545 285919 207974 128489 319801 524148 286253 298521 387664
output:
0
result:
ok 1 number(s): "0"
Test #60:
score: 0
Accepted
time: 8ms
memory: 38804kb
input:
331352 121624 30247 179481 80755 93304 157293 62835 160621 107896
output:
0
result:
ok 1 number(s): "0"
Test #61:
score: 0
Accepted
time: 16ms
memory: 38716kb
input:
425318 161870 195187 68261 58421 111518 255379 98211 149256 177851
output:
0
result:
ok 1 number(s): "0"
Test #62:
score: 0
Accepted
time: 16ms
memory: 38956kb
input:
592741 319914 259579 13248 148647 194672 249422 378967 175386 38388
output:
0
result:
ok 1 number(s): "0"
Test #63:
score: 0
Accepted
time: 127ms
memory: 66300kb
input:
602228 34962 454429 112837 247881 315495 38852 384357 69191 148680
output:
0
result:
ok 1 number(s): "0"
Test #64:
score: 0
Accepted
time: 12ms
memory: 38688kb
input:
610389 373522 193737 43130 62839 130072 417478 138346 203349 268694
output:
0
result:
ok 1 number(s): "0"
Test #65:
score: 0
Accepted
time: 40ms
memory: 45528kb
input:
161360 82645 44242 34473 66788 59603 34969 48139 22450 90771
output:
559061811
result:
ok 1 number(s): "559061811"
Test #66:
score: 0
Accepted
time: 22ms
memory: 38952kb
input:
591506 92336 192103 307067 13873 290990 286643 28921 254667 307918
output:
0
result:
ok 1 number(s): "0"
Test #67:
score: 0
Accepted
time: 126ms
memory: 73040kb
input:
940718 486143 39848 414727 438813 358245 143660 200948 304832 434938
output:
189368763
result:
ok 1 number(s): "189368763"
Test #68:
score: 0
Accepted
time: 18ms
memory: 38892kb
input:
585970 36092 336501 213377 217719 134212 234039 454324 31689 99957
output:
0
result:
ok 1 number(s): "0"
Test #69:
score: 0
Accepted
time: 24ms
memory: 38724kb
input:
814985 350619 424060 40306 318150 477415 19420 296376 381374 137235
output:
0
result:
ok 1 number(s): "0"
Test #70:
score: 0
Accepted
time: 229ms
memory: 94832kb
input:
1212624 635151 355933 221540 382996 340761 488867 28683 189420 994521
output:
0
result:
ok 1 number(s): "0"
Test #71:
score: 0
Accepted
time: 19ms
memory: 38972kb
input:
825460 28354 541876 255230 334422 299199 191839 166016 391674 267770
output:
0
result:
ok 1 number(s): "0"
Test #72:
score: 0
Accepted
time: 20ms
memory: 38956kb
input:
644697 305286 296842 42569 165080 234255 245362 127688 459557 57452
output:
0
result:
ok 1 number(s): "0"
Test #73:
score: 0
Accepted
time: 14ms
memory: 38844kb
input:
604964 3223 299494 302247 292154 126107 186703 77013 270881 257070
output:
0
result:
ok 1 number(s): "0"
Test #74:
score: 0
Accepted
time: 17ms
memory: 38724kb
input:
3 0 1 2 1 1 1 1 1 1
output:
0
result:
ok 1 number(s): "0"
Test #75:
score: 0
Accepted
time: 20ms
memory: 39032kb
input:
4 2 0 2 2 1 1 2 2 0
output:
24
result:
ok 1 number(s): "24"
Test #76:
score: 0
Accepted
time: 16ms
memory: 38808kb
input:
2 1 1 0 1 0 1 0 2 0
output:
0
result:
ok 1 number(s): "0"
Test #77:
score: 0
Accepted
time: 20ms
memory: 38976kb
input:
3 2 1 0 0 1 2 1 2 0
output:
0
result:
ok 1 number(s): "0"
Test #78:
score: 0
Accepted
time: 17ms
memory: 38816kb
input:
3 0 1 2 1 0 2 0 1 2
output:
0
result:
ok 1 number(s): "0"
Test #79:
score: 0
Accepted
time: 12ms
memory: 38720kb
input:
2 0 2 0 1 0 1 0 1 1
output:
0
result:
ok 1 number(s): "0"
Test #80:
score: 0
Accepted
time: 20ms
memory: 38820kb
input:
4 1 2 1 0 2 2 0 2 2
output:
0
result:
ok 1 number(s): "0"
Test #81:
score: 0
Accepted
time: 25ms
memory: 38776kb
input:
1 0 0 1 0 0 1 0 1 0
output:
0
result:
ok 1 number(s): "0"
Test #82:
score: 0
Accepted
time: 25ms
memory: 38688kb
input:
3 1 0 2 1 2 0 2 1 0
output:
0
result:
ok 1 number(s): "0"
Test #83:
score: 0
Accepted
time: 18ms
memory: 38900kb
input:
3 0 1 2 2 0 1 0 1 2
output:
6
result:
ok 1 number(s): "6"
Test #84:
score: 0
Accepted
time: 20ms
memory: 38808kb
input:
3 1 1 1 2 0 1 0 1 2
output:
0
result:
ok 1 number(s): "0"
Test #85:
score: 0
Accepted
time: 19ms
memory: 38720kb
input:
4 1 1 2 1 1 2 2 1 1
output:
0
result:
ok 1 number(s): "0"
Test #86:
score: 0
Accepted
time: 24ms
memory: 38744kb
input:
2 0 2 0 1 0 1 2 0 0
output:
0
result:
ok 1 number(s): "0"
Test #87:
score: 0
Accepted
time: 16ms
memory: 38720kb
input:
2 0 0 2 1 0 1 0 0 2
output:
0
result:
ok 1 number(s): "0"
Test #88:
score: 0
Accepted
time: 20ms
memory: 38780kb
input:
2 0 1 1 0 2 0 2 0 0
output:
0
result:
ok 1 number(s): "0"
Test #89:
score: 0
Accepted
time: 12ms
memory: 38948kb
input:
3 2 0 1 1 1 1 1 1 1
output:
0
result:
ok 1 number(s): "0"
Test #90:
score: 0
Accepted
time: 20ms
memory: 38832kb
input:
5 1 2 2 1 2 2 1 2 2
output:
270
result:
ok 1 number(s): "270"
Test #91:
score: 0
Accepted
time: 20ms
memory: 38692kb
input:
3 2 1 0 1 0 2 0 1 2
output:
0
result:
ok 1 number(s): "0"
Test #92:
score: 0
Accepted
time: 17ms
memory: 38824kb
input:
3 2 1 0 1 0 2 1 1 1
output:
0
result:
ok 1 number(s): "0"
Test #93:
score: 0
Accepted
time: 22ms
memory: 38820kb
input:
4 2 1 1 1 2 1 0 2 2
output:
0
result:
ok 1 number(s): "0"
Test #94:
score: 0
Accepted
time: 16ms
memory: 38784kb
input:
2 0 1 1 2 0 0 0 0 2
output:
0
result:
ok 1 number(s): "0"
Test #95:
score: 0
Accepted
time: 8ms
memory: 38720kb
input:
2 2 0 0 1 1 0 2 0 0
output:
0
result:
ok 1 number(s): "0"
Test #96:
score: 0
Accepted
time: 12ms
memory: 38676kb
input:
4 2 1 1 1 2 1 1 2 1
output:
0
result:
ok 1 number(s): "0"
Test #97:
score: 0
Accepted
time: 14ms
memory: 38744kb
input:
3 2 1 0 1 1 1 1 2 0
output:
6
result:
ok 1 number(s): "6"
Test #98:
score: 0
Accepted
time: 20ms
memory: 38772kb
input:
2 0 2 0 1 0 1 0 0 2
output:
0
result:
ok 1 number(s): "0"
Test #99:
score: 0
Accepted
time: 21ms
memory: 38976kb
input:
2 0 0 2 2 0 0 2 0 0
output:
0
result:
ok 1 number(s): "0"
Test #100:
score: 0
Accepted
time: 17ms
memory: 39028kb
input:
2 1 0 1 0 0 2 0 1 1
output:
2
result:
ok 1 number(s): "2"
Test #101:
score: 0
Accepted
time: 25ms
memory: 38740kb
input:
2 0 0 2 2 0 0 0 0 2
output:
0
result:
ok 1 number(s): "0"
Test #102:
score: 0
Accepted
time: 21ms
memory: 38692kb
input:
3 1 0 2 0 1 2 2 1 0
output:
0
result:
ok 1 number(s): "0"