QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#426457#6325. Peaceful Resultszyz07AC ✓237ms100392kbC++1728.9kb2024-05-31 12:05:152024-05-31 12:05:16

Judging History

你现在查看的是最新测评结果

  • [2024-05-31 12:05:16]
  • 评测
  • 测评结果:AC
  • 用时:237ms
  • 内存:100392kb
  • [2024-05-31 12:05:15]
  • 提交

answer

#include <bits/stdc++.h>

#include <algorithm>
#include <array>
#include <cassert>
#include <type_traits>
#include <vector>


#ifdef _MSC_VER
#include <intrin.h>
#endif

#if __cplusplus >= 202002L
#include <bit>
#endif

namespace atcoder {

namespace internal {

#if __cplusplus >= 202002L

using std::bit_ceil;

#else

unsigned int bit_ceil(unsigned int n) {
    unsigned int x = 1;
    while (x < (unsigned int)(n)) x *= 2;
    return x;
}

#endif

int countr_zero(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

constexpr int countr_zero_constexpr(unsigned int n) {
    int x = 0;
    while (!(n & (1 << x))) x++;
    return x;
}

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif


#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

struct barrett {
    unsigned int _m;
    unsigned long long im;

    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    unsigned int umod() const { return _m; }

    unsigned int mul(unsigned int a, unsigned int b) const {

        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b


        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

namespace internal {

template <class mint,
          int g = internal::primitive_root<mint::mod()>,
          internal::is_static_modint_t<mint>* = nullptr>
struct fft_info {
    static constexpr int rank2 = countr_zero_constexpr(mint::mod() - 1);
    std::array<mint, rank2 + 1> root;   // root[i]^(2^i) == 1
    std::array<mint, rank2 + 1> iroot;  // root[i] * iroot[i] == 1

    std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;
    std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;

    std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;
    std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;

    fft_info() {
        root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
        iroot[rank2] = root[rank2].inv();
        for (int i = rank2 - 1; i >= 0; i--) {
            root[i] = root[i + 1] * root[i + 1];
            iroot[i] = iroot[i + 1] * iroot[i + 1];
        }

        {
            mint prod = 1, iprod = 1;
            for (int i = 0; i <= rank2 - 2; i++) {
                rate2[i] = root[i + 2] * prod;
                irate2[i] = iroot[i + 2] * iprod;
                prod *= iroot[i + 2];
                iprod *= root[i + 2];
            }
        }
        {
            mint prod = 1, iprod = 1;
            for (int i = 0; i <= rank2 - 3; i++) {
                rate3[i] = root[i + 3] * prod;
                irate3[i] = iroot[i + 3] * iprod;
                prod *= iroot[i + 3];
                iprod *= root[i + 3];
            }
        }
    }
};

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
    int n = int(a.size());
    int h = internal::countr_zero((unsigned int)n);

    static const fft_info<mint> info;

    int len = 0;  // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
    while (len < h) {
        if (h - len == 1) {
            int p = 1 << (h - len - 1);
            mint rot = 1;
            for (int s = 0; s < (1 << len); s++) {
                int offset = s << (h - len);
                for (int i = 0; i < p; i++) {
                    auto l = a[i + offset];
                    auto r = a[i + offset + p] * rot;
                    a[i + offset] = l + r;
                    a[i + offset + p] = l - r;
                }
                if (s + 1 != (1 << len))
                    rot *= info.rate2[countr_zero(~(unsigned int)(s))];
            }
            len++;
        } else {
            int p = 1 << (h - len - 2);
            mint rot = 1, imag = info.root[2];
            for (int s = 0; s < (1 << len); s++) {
                mint rot2 = rot * rot;
                mint rot3 = rot2 * rot;
                int offset = s << (h - len);
                for (int i = 0; i < p; i++) {
                    auto mod2 = 1ULL * mint::mod() * mint::mod();
                    auto a0 = 1ULL * a[i + offset].val();
                    auto a1 = 1ULL * a[i + offset + p].val() * rot.val();
                    auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();
                    auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();
                    auto a1na3imag =
                        1ULL * mint(a1 + mod2 - a3).val() * imag.val();
                    auto na2 = mod2 - a2;
                    a[i + offset] = a0 + a2 + a1 + a3;
                    a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
                    a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
                    a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
                }
                if (s + 1 != (1 << len))
                    rot *= info.rate3[countr_zero(~(unsigned int)(s))];
            }
            len += 2;
        }
    }
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
    int n = int(a.size());
    int h = internal::countr_zero((unsigned int)n);

    static const fft_info<mint> info;

    int len = h;  // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
    while (len) {
        if (len == 1) {
            int p = 1 << (h - len);
            mint irot = 1;
            for (int s = 0; s < (1 << (len - 1)); s++) {
                int offset = s << (h - len + 1);
                for (int i = 0; i < p; i++) {
                    auto l = a[i + offset];
                    auto r = a[i + offset + p];
                    a[i + offset] = l + r;
                    a[i + offset + p] =
                        (unsigned long long)(mint::mod() + l.val() - r.val()) *
                        irot.val();
                    ;
                }
                if (s + 1 != (1 << (len - 1)))
                    irot *= info.irate2[countr_zero(~(unsigned int)(s))];
            }
            len--;
        } else {
            int p = 1 << (h - len);
            mint irot = 1, iimag = info.iroot[2];
            for (int s = 0; s < (1 << (len - 2)); s++) {
                mint irot2 = irot * irot;
                mint irot3 = irot2 * irot;
                int offset = s << (h - len + 2);
                for (int i = 0; i < p; i++) {
                    auto a0 = 1ULL * a[i + offset + 0 * p].val();
                    auto a1 = 1ULL * a[i + offset + 1 * p].val();
                    auto a2 = 1ULL * a[i + offset + 2 * p].val();
                    auto a3 = 1ULL * a[i + offset + 3 * p].val();

                    auto a2na3iimag =
                        1ULL *
                        mint((mint::mod() + a2 - a3) * iimag.val()).val();

                    a[i + offset] = a0 + a1 + a2 + a3;
                    a[i + offset + 1 * p] =
                        (a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();
                    a[i + offset + 2 * p] =
                        (a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) *
                        irot2.val();
                    a[i + offset + 3 * p] =
                        (a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) *
                        irot3.val();
                }
                if (s + 1 != (1 << (len - 2)))
                    irot *= info.irate3[countr_zero(~(unsigned int)(s))];
            }
            len -= 2;
        }
    }
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_naive(const std::vector<mint>& a,
                                    const std::vector<mint>& b) {
    int n = int(a.size()), m = int(b.size());
    std::vector<mint> ans(n + m - 1);
    if (n < m) {
        for (int j = 0; j < m; j++) {
            for (int i = 0; i < n; i++) {
                ans[i + j] += a[i] * b[j];
            }
        }
    } else {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                ans[i + j] += a[i] * b[j];
            }
        }
    }
    return ans;
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) {
    int n = int(a.size()), m = int(b.size());
    int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
    a.resize(z);
    internal::butterfly(a);
    b.resize(z);
    internal::butterfly(b);
    for (int i = 0; i < z; i++) {
        a[i] *= b[i];
    }
    internal::butterfly_inv(a);
    a.resize(n + m - 1);
    mint iz = mint(z).inv();
    for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
    return a;
}

}  // namespace internal

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
    assert((mint::mod() - 1) % z == 0);

    if (std::min(n, m) <= 60) return convolution_naive(a, b);
    return internal::convolution_fft(a, b);
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(const std::vector<mint>& a,
                              const std::vector<mint>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
    assert((mint::mod() - 1) % z == 0);

    if (std::min(n, m) <= 60) return convolution_naive(a, b);
    return internal::convolution_fft(a, b);
}

template <unsigned int mod = 998244353,
          class T,
          std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    using mint = static_modint<mod>;

    int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
    assert((mint::mod() - 1) % z == 0);

    std::vector<mint> a2(n), b2(m);
    for (int i = 0; i < n; i++) {
        a2[i] = mint(a[i]);
    }
    for (int i = 0; i < m; i++) {
        b2[i] = mint(b[i]);
    }
    auto c2 = convolution(std::move(a2), std::move(b2));
    std::vector<T> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        c[i] = c2[i].val();
    }
    return c;
}

std::vector<long long> convolution_ll(const std::vector<long long>& a,
                                      const std::vector<long long>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    static constexpr unsigned long long MOD1 = 754974721;  // 2^24
    static constexpr unsigned long long MOD2 = 167772161;  // 2^25
    static constexpr unsigned long long MOD3 = 469762049;  // 2^26
    static constexpr unsigned long long M2M3 = MOD2 * MOD3;
    static constexpr unsigned long long M1M3 = MOD1 * MOD3;
    static constexpr unsigned long long M1M2 = MOD1 * MOD2;
    static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;

    static constexpr unsigned long long i1 =
        internal::inv_gcd(MOD2 * MOD3, MOD1).second;
    static constexpr unsigned long long i2 =
        internal::inv_gcd(MOD1 * MOD3, MOD2).second;
    static constexpr unsigned long long i3 =
        internal::inv_gcd(MOD1 * MOD2, MOD3).second;
        
    static constexpr int MAX_AB_BIT = 24;
    static_assert(MOD1 % (1ull << MAX_AB_BIT) == 1, "MOD1 isn't enough to support an array length of 2^24.");
    static_assert(MOD2 % (1ull << MAX_AB_BIT) == 1, "MOD2 isn't enough to support an array length of 2^24.");
    static_assert(MOD3 % (1ull << MAX_AB_BIT) == 1, "MOD3 isn't enough to support an array length of 2^24.");
    assert(n + m - 1 <= (1 << MAX_AB_BIT));

    auto c1 = convolution<MOD1>(a, b);
    auto c2 = convolution<MOD2>(a, b);
    auto c3 = convolution<MOD3>(a, b);

    std::vector<long long> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        unsigned long long x = 0;
        x += (c1[i] * i1) % MOD1 * M2M3;
        x += (c2[i] * i2) % MOD2 * M1M3;
        x += (c3[i] * i3) % MOD3 * M1M2;
        long long diff =
            c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
        if (diff < 0) diff += MOD1;
        static constexpr unsigned long long offset[5] = {
            0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
        x -= offset[diff % 5];
        c[i] = x;
    }

    return c;
}

}  // namespace atcoder

using namespace std;
#define For(Ti,Ta,Tb) for(auto Ti=(Ta);Ti<=(Tb);++Ti)
#define Dec(Ti,Ta,Tb) for(auto Ti=(Ta);Ti>=(Tb);--Ti)
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define range(Tx) begin(Tx),end(Tx)
using ll=long long;
const int N=1.5e6+5,tot=9,Mod=998244353;
ll fac[N],inv[N],ifac[N];
void init_fac(){
	fac[0]=1;
	For(i,1,N-1) fac[i]=fac[i-1]*i%Mod;
	inv[1]=1;
	For(i,2,N-1) inv[i]=(Mod-Mod/i)*inv[Mod%i]%Mod;
	ifac[0]=ifac[1]=1;
	For(i,2,N-1) ifac[i]=ifac[i-1]*inv[i]%Mod;
}
int tid,T,n,a[3][3],res[9];
double M[9][10];
void gauss(){
	for(int r=0,c=0;r<tot&&c<tot;){
		if(abs(M[r][c])<=1e-9){
			For(i,r+1,tot-1){
				if(abs(M[i][c])>1e-9){
					swap_ranges(M[r],M[r]+tot+1,M[i]);
					break;
				}
			}
		}
		if(abs(M[r][c])<=1e-9){
			++c;
			continue;
		}
		double inv=1/M[r][c];
		For(i,c,tot){
			M[r][i]*=inv;
		}
		For(i,r+1,tot-1){
			double x=M[i][c];
			Dec(j,tot,c){
				M[i][j]-=x*M[r][j];
			}
		}
		++r;
	}
}
bool out(int x){
	return x<0||x>n;
}
int main(){
	cin.tie(nullptr)->sync_with_stdio(false);
	init_fac();
	T=1;
	while(T--){
		cin>>n;
		memset(M,0,sizeof(M));
		For(i,0,2){
			For(j,0,2){
				cin>>a[i][j];
				M[i*3+j][9]=a[i][j];
			}
		}
		M[0][0]=M[0][1]=M[0][6]=1;
		M[1][2]=M[1][3]=M[1][7]=1;
		M[2][4]=M[2][5]=M[2][8]=1;
		M[3][2]=M[3][4]=M[3][6]=1;
		M[4][0]=M[4][5]=M[4][7]=1;
		M[5][1]=M[5][3]=M[5][8]=1;
		M[6][3]=M[6][5]=M[6][6]=1;
		M[7][1]=M[7][4]=M[7][7]=1;
		M[8][0]=M[8][2]=M[8][8]=1;
		gauss();
		if(abs(int(round(M[6][9]))-M[6][9])>1e-9){
			cout<<"0\n";
			continue;
		}
		For(i,0,9){
			M[5][i]*=2;
		}
		For(i,0,8){
			res[i]=round(M[i][9]);
		}
		if((res[5]+res[6])%2){
			cout<<"0\n";
			continue;
		}
		res[5]=(res[5]+res[6])/2;
		vector<int> v5(n+1),v8(n+1);
		For(x8,0,n){
			int x7=x8+res[6],x6=x8+res[5];
			if(out(x6)||out(x7)) continue;
			v8[x8]=ifac[x8]*ifac[x7]%Mod*ifac[x6]%Mod;
		}
		For(x5,0,n){
			int x2=res[2]-res[4]-res[5]+x5;
			int x1=res[1]-res[5]+res[6]+x5;
			if(out(x1)||out(x2)) continue;
			v5[x5]=ifac[x5]*ifac[x2]%Mod*ifac[x1]%Mod;
		}
		vector<int> f=atcoder::convolution<Mod>(v5,v8);
		ll ans=0;
		For(xs,0,n){
			int x4=res[4]-xs;
			int x3=res[3]+res[4]+res[5]-res[6]-xs;
			int x0=res[0]-res[1]-res[6]-xs;
			if(out(x0)||out(x3)||out(x4)) continue;
			(ans+=ifac[x4]*ifac[x3]%Mod*ifac[x0]%Mod*f[xs])%=Mod;
		}
		cout<<ans*fac[n]%Mod<<'\n';
	}
	return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 25ms
memory: 38972kb

input:

2
2 0 0
1 1 0
1 0 1

output:

2

result:

ok 1 number(s): "2"

Test #2:

score: 0
Accepted
time: 24ms
memory: 38968kb

input:

3
0 1 2
3 0 0
1 1 1

output:

0

result:

ok 1 number(s): "0"

Test #3:

score: 0
Accepted
time: 64ms
memory: 53052kb

input:

333333
111111 111111 111111
111111 111111 111111
111111 111111 111111

output:

383902959

result:

ok 1 number(s): "383902959"

Test #4:

score: 0
Accepted
time: 229ms
memory: 100312kb

input:

1500000
500000 500000 500000
500000 500000 500000
500000 500000 500000

output:

355543262

result:

ok 1 number(s): "355543262"

Test #5:

score: 0
Accepted
time: 229ms
memory: 100256kb

input:

1499999
499999 499999 500001
499999 499999 500001
499999 499999 500001

output:

934301164

result:

ok 1 number(s): "934301164"

Test #6:

score: 0
Accepted
time: 216ms
memory: 100392kb

input:

1500000
1 0 1499999
1499999 1 0
0 1499999 1

output:

1500000

result:

ok 1 number(s): "1500000"

Test #7:

score: 0
Accepted
time: 228ms
memory: 100336kb

input:

1499999
0 749999 750000
750000 0 749999
749999 750000 0

output:

713966599

result:

ok 1 number(s): "713966599"

Test #8:

score: 0
Accepted
time: 17ms
memory: 38832kb

input:

1
1 0 0
0 0 1
0 1 0

output:

1

result:

ok 1 number(s): "1"

Test #9:

score: 0
Accepted
time: 24ms
memory: 38816kb

input:

1
0 1 0
0 1 0
0 1 0

output:

1

result:

ok 1 number(s): "1"

Test #10:

score: 0
Accepted
time: 12ms
memory: 38984kb

input:

1
0 0 1
1 0 0
1 0 0

output:

0

result:

ok 1 number(s): "0"

Test #11:

score: 0
Accepted
time: 231ms
memory: 100200kb

input:

1499999
500000 500000 499999
499999 499999 500001
499999 499999 500001

output:

617065435

result:

ok 1 number(s): "617065435"

Test #12:

score: 0
Accepted
time: 8ms
memory: 38972kb

input:

2
1 1 0
0 0 2
0 0 2

output:

0

result:

ok 1 number(s): "0"

Test #13:

score: 0
Accepted
time: 236ms
memory: 100324kb

input:

1500000
500000 500001 499999
499999 500000 500001
499999 500000 500001

output:

925862004

result:

ok 1 number(s): "925862004"

Test #14:

score: 0
Accepted
time: 131ms
memory: 67056kb

input:

629197
210878 201408 216911
145293 266423 217481
194751 220179 214267

output:

447295633

result:

ok 1 number(s): "447295633"

Test #15:

score: 0
Accepted
time: 125ms
memory: 65952kb

input:

579097
200209 204257 174631
149110 148890 281097
138034 263752 177311

output:

71830925

result:

ok 1 number(s): "71830925"

Test #16:

score: 0
Accepted
time: 69ms
memory: 53316kb

input:

354224
100316 63899 190009
69306 123829 161089
140523 76088 137613

output:

44852283

result:

ok 1 number(s): "44852283"

Test #17:

score: 0
Accepted
time: 226ms
memory: 94980kb

input:

1229851
383009 323934 522908
551226 311238 367387
547622 353128 329101

output:

39721313

result:

ok 1 number(s): "39721313"

Test #18:

score: 0
Accepted
time: 138ms
memory: 71484kb

input:

858452
195309 312080 351063
384805 51797 421850
200466 301164 356822

output:

506491992

result:

ok 1 number(s): "506491992"

Test #19:

score: 0
Accepted
time: 230ms
memory: 98852kb

input:

1424218
661653 323895 438670
467846 488045 468327
369769 343207 711242

output:

782021141

result:

ok 1 number(s): "782021141"

Test #20:

score: 0
Accepted
time: 221ms
memory: 92040kb

input:

1079733
333391 427895 318447
579853 153924 345956
406031 300755 372947

output:

111229812

result:

ok 1 number(s): "111229812"

Test #21:

score: 0
Accepted
time: 103ms
memory: 65764kb

input:

572270
168517 197624 206129
238722 154914 178634
192692 145891 233687

output:

93444378

result:

ok 1 number(s): "93444378"

Test #22:

score: 0
Accepted
time: 71ms
memory: 55712kb

input:

470911
95201 196020 179690
143795 173744 153372
142604 154489 173818

output:

629148200

result:

ok 1 number(s): "629148200"

Test #23:

score: 0
Accepted
time: 61ms
memory: 56620kb

input:

514907
142312 117185 255410
52426 249434 213047
180346 59381 275180

output:

497502651

result:

ok 1 number(s): "497502651"

Test #24:

score: 0
Accepted
time: 69ms
memory: 54536kb

input:

406588
151239 177967 77382
93189 144948 168451
94378 135309 176901

output:

790871601

result:

ok 1 number(s): "790871601"

Test #25:

score: 0
Accepted
time: 53ms
memory: 45748kb

input:

175290
55982 60345 58963
48359 77923 49008
23679 74616 76995

output:

123245869

result:

ok 1 number(s): "123245869"

Test #26:

score: 0
Accepted
time: 231ms
memory: 98144kb

input:

1387914
512757 474809 400348
378268 216654 792992
649332 374567 364015

output:

676034326

result:

ok 1 number(s): "676034326"

Test #27:

score: 0
Accepted
time: 120ms
memory: 69600kb

input:

764222
219470 230830 313922
331893 97293 335036
97220 292440 374562

output:

158682546

result:

ok 1 number(s): "158682546"

Test #28:

score: 0
Accepted
time: 132ms
memory: 69252kb

input:

753135
242199 294626 216310
175239 287120 290776
282985 150249 319901

output:

971077263

result:

ok 1 number(s): "971077263"

Test #29:

score: 0
Accepted
time: 124ms
memory: 72408kb

input:

907648
254368 314623 338657
266634 210330 430684
203259 377229 327160

output:

657924076

result:

ok 1 number(s): "657924076"

Test #30:

score: 0
Accepted
time: 124ms
memory: 69012kb

input:

734407
287960 273092 173355
91803 383817 258787
317856 268839 147712

output:

302163640

result:

ok 1 number(s): "302163640"

Test #31:

score: 0
Accepted
time: 122ms
memory: 70164kb

input:

802408
296016 284435 221957
207041 242882 352485
117792 274366 410250

output:

54247530

result:

ok 1 number(s): "54247530"

Test #32:

score: 0
Accepted
time: 133ms
memory: 65740kb

input:

562487
158889 225035 178563
148413 302399 111675
148133 215119 199235

output:

169658542

result:

ok 1 number(s): "169658542"

Test #33:

score: 0
Accepted
time: 135ms
memory: 74156kb

input:

999120
389537 311486 298097
316708 332443 349969
261915 402318 334887

output:

352258886

result:

ok 1 number(s): "352258886"

Test #34:

score: 0
Accepted
time: 230ms
memory: 98572kb

input:

1409159
427245 484076 497838
435890 528804 444465
588832 314386 505941

output:

887383005

result:

ok 1 number(s): "887383005"

Test #35:

score: 0
Accepted
time: 128ms
memory: 74328kb

input:

1003619
340241 274051 389327
166457 383901 453261
211841 434615 357163

output:

353962733

result:

ok 1 number(s): "353962733"

Test #36:

score: 0
Accepted
time: 24ms
memory: 39408kb

input:

22574
9246 5094 8234
9209 7482 5883
12089 6331 4154

output:

60839910

result:

ok 1 number(s): "60839910"

Test #37:

score: 0
Accepted
time: 231ms
memory: 98672kb

input:

1415532
478588 564750 372194
512789 526677 376066
217017 566262 632253

output:

625939628

result:

ok 1 number(s): "625939628"

Test #38:

score: 0
Accepted
time: 118ms
memory: 67604kb

input:

662723
241713 270544 150466
205318 236372 221033
329239 165257 168227

output:

186211005

result:

ok 1 number(s): "186211005"

Test #39:

score: 0
Accepted
time: 237ms
memory: 92396kb

input:

1096822
586933 218335 291554
392825 346250 357747
326051 392267 378504

output:

128569855

result:

ok 1 number(s): "128569855"

Test #40:

score: 0
Accepted
time: 225ms
memory: 95312kb

input:

1246485
277064 449274 520147
467862 333900 444723
590215 427647 228623

output:

695555486

result:

ok 1 number(s): "695555486"

Test #41:

score: 0
Accepted
time: 69ms
memory: 53260kb

input:

351715
120661 101781 129273
142995 80157 128563
169330 148880 33505

output:

466480620

result:

ok 1 number(s): "466480620"

Test #42:

score: 0
Accepted
time: 120ms
memory: 72440kb

input:

905498
381722 200474 323302
202271 344030 359197
350698 364396 190404

output:

346377686

result:

ok 1 number(s): "346377686"

Test #43:

score: 0
Accepted
time: 224ms
memory: 91780kb

input:

1064626
261709 325862 477055
516569 367130 180927
307746 452237 304643

output:

557495758

result:

ok 1 number(s): "557495758"

Test #44:

score: 0
Accepted
time: 16ms
memory: 38744kb

input:

494104
224009 132488 137607
15527 180865 297712
203418 197294 93392

output:

0

result:

ok 1 number(s): "0"

Test #45:

score: 0
Accepted
time: 18ms
memory: 38832kb

input:

1153008
315731 708637 128640
128519 347757 676732
267014 535519 350475

output:

0

result:

ok 1 number(s): "0"

Test #46:

score: 0
Accepted
time: 237ms
memory: 99748kb

input:

1470490
550743 481409 438338
763576 96662 610252
363836 262517 844137

output:

964914867

result:

ok 1 number(s): "964914867"

Test #47:

score: 0
Accepted
time: 79ms
memory: 55880kb

input:

476270
72377 235854 168039
1528 311122 163620
254184 15707 206379

output:

0

result:

ok 1 number(s): "0"

Test #48:

score: 0
Accepted
time: 18ms
memory: 38820kb

input:

787189
201940 129464 455785
243491 290356 253342
257543 326980 202666

output:

0

result:

ok 1 number(s): "0"

Test #49:

score: 0
Accepted
time: 12ms
memory: 38764kb

input:

1311581
662049 427399 222133
182392 768551 360638
257311 534768 519502

output:

0

result:

ok 1 number(s): "0"

Test #50:

score: 0
Accepted
time: 44ms
memory: 46704kb

input:

215077
105142 95920 14015
37417 106030 71630
97785 86292 31000

output:

0

result:

ok 1 number(s): "0"

Test #51:

score: 0
Accepted
time: 12ms
memory: 38740kb

input:

680614
190222 59142 431250
229277 326583 124754
244226 267501 168887

output:

0

result:

ok 1 number(s): "0"

Test #52:

score: 0
Accepted
time: 25ms
memory: 38808kb

input:

599441
163256 359629 76556
269072 153998 176371
296850 273987 28604

output:

0

result:

ok 1 number(s): "0"

Test #53:

score: 0
Accepted
time: 25ms
memory: 38776kb

input:

1186565
664884 314828 206853
50093 597130 539342
352770 117639 716156

output:

0

result:

ok 1 number(s): "0"

Test #54:

score: 0
Accepted
time: 25ms
memory: 38744kb

input:

399589
160429 157151 82009
52807 151045 195737
168413 46646 184530

output:

0

result:

ok 1 number(s): "0"

Test #55:

score: 0
Accepted
time: 75ms
memory: 56116kb

input:

498263
277597 129082 91584
146928 169294 182041
198001 220974 79288

output:

20392590

result:

ok 1 number(s): "20392590"

Test #56:

score: 0
Accepted
time: 228ms
memory: 96164kb

input:

1287548
598441 439788 249319
532780 427274 327494
984985 96121 206442

output:

157485795

result:

ok 1 number(s): "157485795"

Test #57:

score: 0
Accepted
time: 21ms
memory: 38824kb

input:

1435275
447804 724373 263098
383152 619901 432222
383304 68399 983572

output:

0

result:

ok 1 number(s): "0"

Test #58:

score: 0
Accepted
time: 14ms
memory: 38820kb

input:

699090
240262 213752 245076
255039 260728 183323
234619 115480 348991

output:

0

result:

ok 1 number(s): "0"

Test #59:

score: 0
Accepted
time: 25ms
memory: 38976kb

input:

972438
478545 285919 207974
128489 319801 524148
286253 298521 387664

output:

0

result:

ok 1 number(s): "0"

Test #60:

score: 0
Accepted
time: 8ms
memory: 38804kb

input:

331352
121624 30247 179481
80755 93304 157293
62835 160621 107896

output:

0

result:

ok 1 number(s): "0"

Test #61:

score: 0
Accepted
time: 16ms
memory: 38716kb

input:

425318
161870 195187 68261
58421 111518 255379
98211 149256 177851

output:

0

result:

ok 1 number(s): "0"

Test #62:

score: 0
Accepted
time: 16ms
memory: 38956kb

input:

592741
319914 259579 13248
148647 194672 249422
378967 175386 38388

output:

0

result:

ok 1 number(s): "0"

Test #63:

score: 0
Accepted
time: 127ms
memory: 66300kb

input:

602228
34962 454429 112837
247881 315495 38852
384357 69191 148680

output:

0

result:

ok 1 number(s): "0"

Test #64:

score: 0
Accepted
time: 12ms
memory: 38688kb

input:

610389
373522 193737 43130
62839 130072 417478
138346 203349 268694

output:

0

result:

ok 1 number(s): "0"

Test #65:

score: 0
Accepted
time: 40ms
memory: 45528kb

input:

161360
82645 44242 34473
66788 59603 34969
48139 22450 90771

output:

559061811

result:

ok 1 number(s): "559061811"

Test #66:

score: 0
Accepted
time: 22ms
memory: 38952kb

input:

591506
92336 192103 307067
13873 290990 286643
28921 254667 307918

output:

0

result:

ok 1 number(s): "0"

Test #67:

score: 0
Accepted
time: 126ms
memory: 73040kb

input:

940718
486143 39848 414727
438813 358245 143660
200948 304832 434938

output:

189368763

result:

ok 1 number(s): "189368763"

Test #68:

score: 0
Accepted
time: 18ms
memory: 38892kb

input:

585970
36092 336501 213377
217719 134212 234039
454324 31689 99957

output:

0

result:

ok 1 number(s): "0"

Test #69:

score: 0
Accepted
time: 24ms
memory: 38724kb

input:

814985
350619 424060 40306
318150 477415 19420
296376 381374 137235

output:

0

result:

ok 1 number(s): "0"

Test #70:

score: 0
Accepted
time: 229ms
memory: 94832kb

input:

1212624
635151 355933 221540
382996 340761 488867
28683 189420 994521

output:

0

result:

ok 1 number(s): "0"

Test #71:

score: 0
Accepted
time: 19ms
memory: 38972kb

input:

825460
28354 541876 255230
334422 299199 191839
166016 391674 267770

output:

0

result:

ok 1 number(s): "0"

Test #72:

score: 0
Accepted
time: 20ms
memory: 38956kb

input:

644697
305286 296842 42569
165080 234255 245362
127688 459557 57452

output:

0

result:

ok 1 number(s): "0"

Test #73:

score: 0
Accepted
time: 14ms
memory: 38844kb

input:

604964
3223 299494 302247
292154 126107 186703
77013 270881 257070

output:

0

result:

ok 1 number(s): "0"

Test #74:

score: 0
Accepted
time: 17ms
memory: 38724kb

input:

3
0 1 2
1 1 1
1 1 1

output:

0

result:

ok 1 number(s): "0"

Test #75:

score: 0
Accepted
time: 20ms
memory: 39032kb

input:

4
2 0 2
2 1 1
2 2 0

output:

24

result:

ok 1 number(s): "24"

Test #76:

score: 0
Accepted
time: 16ms
memory: 38808kb

input:

2
1 1 0
1 0 1
0 2 0

output:

0

result:

ok 1 number(s): "0"

Test #77:

score: 0
Accepted
time: 20ms
memory: 38976kb

input:

3
2 1 0
0 1 2
1 2 0

output:

0

result:

ok 1 number(s): "0"

Test #78:

score: 0
Accepted
time: 17ms
memory: 38816kb

input:

3
0 1 2
1 0 2
0 1 2

output:

0

result:

ok 1 number(s): "0"

Test #79:

score: 0
Accepted
time: 12ms
memory: 38720kb

input:

2
0 2 0
1 0 1
0 1 1

output:

0

result:

ok 1 number(s): "0"

Test #80:

score: 0
Accepted
time: 20ms
memory: 38820kb

input:

4
1 2 1
0 2 2
0 2 2

output:

0

result:

ok 1 number(s): "0"

Test #81:

score: 0
Accepted
time: 25ms
memory: 38776kb

input:

1
0 0 1
0 0 1
0 1 0

output:

0

result:

ok 1 number(s): "0"

Test #82:

score: 0
Accepted
time: 25ms
memory: 38688kb

input:

3
1 0 2
1 2 0
2 1 0

output:

0

result:

ok 1 number(s): "0"

Test #83:

score: 0
Accepted
time: 18ms
memory: 38900kb

input:

3
0 1 2
2 0 1
0 1 2

output:

6

result:

ok 1 number(s): "6"

Test #84:

score: 0
Accepted
time: 20ms
memory: 38808kb

input:

3
1 1 1
2 0 1
0 1 2

output:

0

result:

ok 1 number(s): "0"

Test #85:

score: 0
Accepted
time: 19ms
memory: 38720kb

input:

4
1 1 2
1 1 2
2 1 1

output:

0

result:

ok 1 number(s): "0"

Test #86:

score: 0
Accepted
time: 24ms
memory: 38744kb

input:

2
0 2 0
1 0 1
2 0 0

output:

0

result:

ok 1 number(s): "0"

Test #87:

score: 0
Accepted
time: 16ms
memory: 38720kb

input:

2
0 0 2
1 0 1
0 0 2

output:

0

result:

ok 1 number(s): "0"

Test #88:

score: 0
Accepted
time: 20ms
memory: 38780kb

input:

2
0 1 1
0 2 0
2 0 0

output:

0

result:

ok 1 number(s): "0"

Test #89:

score: 0
Accepted
time: 12ms
memory: 38948kb

input:

3
2 0 1
1 1 1
1 1 1

output:

0

result:

ok 1 number(s): "0"

Test #90:

score: 0
Accepted
time: 20ms
memory: 38832kb

input:

5
1 2 2
1 2 2
1 2 2

output:

270

result:

ok 1 number(s): "270"

Test #91:

score: 0
Accepted
time: 20ms
memory: 38692kb

input:

3
2 1 0
1 0 2
0 1 2

output:

0

result:

ok 1 number(s): "0"

Test #92:

score: 0
Accepted
time: 17ms
memory: 38824kb

input:

3
2 1 0
1 0 2
1 1 1

output:

0

result:

ok 1 number(s): "0"

Test #93:

score: 0
Accepted
time: 22ms
memory: 38820kb

input:

4
2 1 1
1 2 1
0 2 2

output:

0

result:

ok 1 number(s): "0"

Test #94:

score: 0
Accepted
time: 16ms
memory: 38784kb

input:

2
0 1 1
2 0 0
0 0 2

output:

0

result:

ok 1 number(s): "0"

Test #95:

score: 0
Accepted
time: 8ms
memory: 38720kb

input:

2
2 0 0
1 1 0
2 0 0

output:

0

result:

ok 1 number(s): "0"

Test #96:

score: 0
Accepted
time: 12ms
memory: 38676kb

input:

4
2 1 1
1 2 1
1 2 1

output:

0

result:

ok 1 number(s): "0"

Test #97:

score: 0
Accepted
time: 14ms
memory: 38744kb

input:

3
2 1 0
1 1 1
1 2 0

output:

6

result:

ok 1 number(s): "6"

Test #98:

score: 0
Accepted
time: 20ms
memory: 38772kb

input:

2
0 2 0
1 0 1
0 0 2

output:

0

result:

ok 1 number(s): "0"

Test #99:

score: 0
Accepted
time: 21ms
memory: 38976kb

input:

2
0 0 2
2 0 0
2 0 0

output:

0

result:

ok 1 number(s): "0"

Test #100:

score: 0
Accepted
time: 17ms
memory: 39028kb

input:

2
1 0 1
0 0 2
0 1 1

output:

2

result:

ok 1 number(s): "2"

Test #101:

score: 0
Accepted
time: 25ms
memory: 38740kb

input:

2
0 0 2
2 0 0
0 0 2

output:

0

result:

ok 1 number(s): "0"

Test #102:

score: 0
Accepted
time: 21ms
memory: 38692kb

input:

3
1 0 2
0 1 2
2 1 0

output:

0

result:

ok 1 number(s): "0"