QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#420830 | #8676. Three Kinds of Dice | bulijiojiodibuliduo# | WA | 28ms | 8368kb | C++17 | 11.8kb | 2024-05-24 22:45:30 | 2024-05-24 22:45:31 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define eb emplace_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef basic_string<int> BI;
typedef long long ll;
typedef pair<int,int> PII;
typedef double db;
mt19937 mrand(random_device{}());
const ll mod=1000000007;
int rnd(int x) { return mrand() % x;}
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
// head
typedef double db;
const db EPS = 1e-9;
const db PI = acos(-1.0);
inline int sign(db a) { return a < -EPS ? -1 : a > EPS; }
inline int cmp(db a, db b){ return sign(a-b); }
struct P {
db x, y;
P() {}
P(db _x, db _y) : x(_x), y(_y) {}
P operator+(P p) { return {x + p.x, y + p.y}; }
P operator-(P p) { return {x - p.x, y - p.y}; }
P operator*(db d) { return {x * d, y * d}; }
P operator/(db d) { return {x / d, y / d}; }
bool operator<(P p) const {
int c = cmp(x, p.x);
if (c) return c == -1;
return cmp(y, p.y) == -1;
}
bool operator==(P o) const{
return cmp(x,o.x) == 0 && cmp(y,o.y) == 0;
}
db dot(P p) { return x * p.x + y * p.y; }
db det(P p) { return x * p.y - y * p.x; }
db distTo(P p) { return (*this-p).abs(); }
db alpha() { return atan2(y, x); }
void read() { cin>>x>>y; }
void write() {cout<<"("<<x<<","<<y<<")"<<endl;}
db abs() { return sqrt(abs2());}
db abs2() { return x * x + y * y; }
P rot90() { return P(-y,x);}
P unit() { return *this/abs(); }
int quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); }
P rot(db an){ return {x*cos(an)-y*sin(an),x*sin(an) + y*cos(an)}; }
};
#define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))
#define crossOp(p1,p2,p3) sign(cross(p1,p2,p3))
bool chkLL(P p1, P p2, P q1, P q2) {
db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
return sign(a1+a2) != 0;
}
P isLL(P p1, P p2, P q1, P q2) {
db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
return (p1 * a2 + p2 * a1) / (a1 + a2);
}
bool intersect(db l1,db r1,db l2,db r2){
if(l1>r1) swap(l1,r1); if(l2>r2) swap(l2,r2);
return !( cmp(r1,l2) == -1 || cmp(r2,l1) == -1 );
}
bool isSS(P p1, P p2, P q1, P q2){
return intersect(p1.x,p2.x,q1.x,q2.x) && intersect(p1.y,p2.y,q1.y,q2.y) &&
crossOp(p1,p2,q1) * crossOp(p1,p2,q2) <= 0 && crossOp(q1,q2,p1)
* crossOp(q1,q2,p2) <= 0;
}
bool isSS_strict(P p1, P p2, P q1, P q2){
return crossOp(p1,p2,q1) * crossOp(p1,p2,q2) < 0 && crossOp(q1,q2,p1)
* crossOp(q1,q2,p2) < 0;
}
bool isMiddle(db a, db m, db b) {
return sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m);
}
bool isMiddle(P a, P m, P b) {
return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);
}
bool onSeg(P p1, P p2, P q){
return crossOp(p1,p2,q) == 0 && isMiddle(p1, q, p2);
}
bool onSeg_strict(P p1, P p2, P q){
return crossOp(p1,p2,q) == 0 && sign((q-p1).dot(p1-p2)) * sign((q-p2).dot(p1-p2)) < 0;
}
P proj(P p1, P p2, P q) {
P dir = p2 - p1;
return p1 + dir * (dir.dot(q - p1) / dir.abs2());
}
P reflect(P p1, P p2, P q){
return proj(p1,p2,q) * 2 - q;
}
db nearest(P p1,P p2,P q){
if (p1==p2) return p1.distTo(q);
P h = proj(p1,p2,q);
if(isMiddle(p1,h,p2))
return q.distTo(h);
return min(p1.distTo(q),p2.distTo(q));
}
db disSS(P p1, P p2, P q1, P q2){
if(isSS(p1,p2,q1,q2)) return 0;
return min(min(nearest(p1,p2,q1),nearest(p1,p2,q2)), min(nearest(q1,q2,p1),nearest(q1,q2,p2)));
}
db rad(P p1,P p2){
return atan2l(p1.det(p2),p1.dot(p2));
}
db incircle(P p1, P p2, P p3){
db A = p1.distTo(p2);
db B = p2.distTo(p3);
db C = p3.distTo(p1);
return sqrtl(A*B*C/(A+B+C));
}
//polygon
db area(vector<P> ps){
db ret = 0; rep(i,0,ps.size()) ret += ps[i].det(ps[(i+1)%ps.size()]);
return ret/2;
}
int contain(vector<P> ps, P p){ //2:inside,1:on_seg,0:outside
int n = ps.size(), ret = 0;
rep(i,0,n){
P u=ps[i],v=ps[(i+1)%n];
if(onSeg(u,v,p)) return 1;
if(cmp(u.y,v.y)<=0) swap(u,v);
if(cmp(p.y,u.y) >0 || cmp(p.y,v.y) <= 0) continue;
ret ^= crossOp(p,u,v) > 0;
}
return ret*2;
}
vector<P> convexHull(vector<P> ps) {
int n = ps.size(); if(n <= 1) return ps;
sort(ps.begin(), ps.end());
vector<P> qs(n * 2); int k = 0;
for (int i = 0; i < n; qs[k++] = ps[i++])
while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0) --k;
for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--])
while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0) --k;
qs.resize(k - 1);
return qs;
}
vector<P> convexHullNonStrict(vector<P> ps) {
//caution: need to unique the Ps first
int n = ps.size(); if(n <= 1) return ps;
sort(ps.begin(), ps.end());
vector<P> qs(n * 2); int k = 0;
for (int i = 0; i < n; qs[k++] = ps[i++])
while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0) --k;
for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--])
while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0) --k;
qs.resize(k - 1);
return qs;
}
db convexDiameter(vector<P> ps){
int n = ps.size(); if(n <= 1) return 0;
int is = 0, js = 0; rep(k,1,n) is = ps[k]<ps[is]?k:is, js = ps[js] < ps[k]?k:js;
int i = is, j = js;
db ret = ps[i].distTo(ps[j]);
do{
if((ps[(i+1)%n]-ps[i]).det(ps[(j+1)%n]-ps[j]) >= 0)
(++j)%=n;
else
(++i)%=n;
ret = max(ret,ps[i].distTo(ps[j]));
}while(i!=is || j!=js);
return ret;
}
vector<P> convexCut(const vector<P>&ps, P q1, P q2) {
vector<P> qs;
int n = ps.size();
rep(i,0,n){
P p1 = ps[i], p2 = ps[(i+1)%n];
int d1 = crossOp(q1,q2,p1), d2 = crossOp(q1,q2,p2);
if(d1 >= 0) qs.pb(p1);
if(d1 * d2 < 0) qs.pb(isLL(p1,p2,q1,q2));
}
return qs;
}
//min_dist
db min_dist(vector<P>&ps,int l,int r){
if(r-l<=5){
db ret = 1e100;
rep(i,l,r) rep(j,l,i) ret = min(ret,ps[i].distTo(ps[j]));
return ret;
}
int m = (l+r)>>1;
db ret = min(min_dist(ps,l,m),min_dist(ps,m,r));
vector<P> qs; rep(i,l,r) if(abs(ps[i].x-ps[m].x)<= ret) qs.pb(ps[i]);
sort(qs.begin(), qs.end(),[](P a,P b) -> bool {return a.y<b.y; });
rep(i,1,qs.size()) for(int j=i-1;j>=0&&qs[j].y>=qs[i].y-ret;--j)
ret = min(ret,qs[i].distTo(qs[j]));
return ret;
}
int type(P o1,db r1,P o2,db r2){
db d = o1.distTo(o2);
if(cmp(d,r1+r2) == 1) return 4;
if(cmp(d,r1+r2) == 0) return 3;
if(cmp(d,abs(r1-r2)) == 1) return 2;
if(cmp(d,abs(r1-r2)) == 0) return 1;
return 0;
}
vector<P> isCL(P o,db r,P p1,P p2){
if (cmp(abs((o-p1).det(p2-p1)/p1.distTo(p2)),r)>0) return {};
db x = (p1-o).dot(p2-p1), y = (p2-p1).abs2(), d = x * x - y * ((p1-o).abs2() - r*r);
d = max(d,(db)0.0); P m = p1 - (p2-p1)*(x/y), dr = (p2-p1)*(sqrt(d)/y);
return {m-dr,m+dr}; //along dir: p1->p2
}
vector<P> isCC(P o1, db r1, P o2, db r2) { //need to check whether two circles are the same
db d = o1.distTo(o2);
if (cmp(d, r1 + r2) == 1) return {};
if (cmp(d,abs(r1-r2))==-1) return {};
d = min(d, r1 + r2);
db y = (r1 * r1 + d * d - r2 * r2) / (2 * d), x = sqrt(r1 * r1 - y * y);
P dr = (o2 - o1).unit();
P q1 = o1 + dr * y, q2 = dr.rot90() * x;
return {q1-q2,q1+q2};//along circle 1
}
vector<P> tanCP(P o, db r, P p) {
db x = (p - o).abs2(), d = x - r * r;
if (sign(d) <= 0) return {}; // on circle => no tangent
P q1 = o + (p - o) * (r * r / x);
P q2 = (p - o).rot90() * (r * sqrt(d) / x);
return {q1-q2,q1+q2}; //counter clock-wise
}
// extanCC, intanCC : -r2, tanCP : r2 = 0
vector<pair<P, P>> tanCC(P o1, db r1, P o2, db r2) {
P d = o2 - o1;
db dr = r1 - r2, d2 = d.abs2(), h2 = d2 - dr * dr;
if (sign(d2) == 0|| sign(h2) < 0) return {};
h2 = max(0.0, h2);
vector<pair<P, P>> ret;
for (db sign : {-1, 1}) {
P v = (d * dr + d.rot90() * sqrt(h2) * sign) / d2;
ret.push_back({o1 + v * r1, o2 + v * r2});
}
if (sign(h2) == 0) ret.pop_back();
return ret;
}
db areaCT(db r, P p1, P p2){
vector<P> is = isCL(P(0,0),r,p1,p2);
if(is.empty()) return r*r*rad(p1,p2)/2;
bool b1 = cmp(p1.abs2(),r*r) == 1, b2 = cmp(p2.abs2(), r*r) == 1;
if(b1 && b2){
P md=(is[0]+is[1])/2;
if(sign((p1-md).dot(p2-md)) <= 0)
return r*r*(rad(p1,is[0]) + rad(is[1],p2))/2 + is[0].det(is[1])/2;
else return r*r*rad(p1,p2)/2;
}
if(b1) return (r*r*rad(p1,is[0]) + is[0].det(p2))/2;
if(b2) return (p1.det(is[1]) + r*r*rad(is[1],p2))/2;
return p1.det(p2)/2;
}
struct L{ //ps[0] -> ps[1]
P ps[2];
P dir_;
P& operator[](int i) { return ps[i]; }
P dir() { return dir_; }
L (P a,P b) {
ps[0]=a;
ps[1]=b;
dir_ = (ps[1]-ps[0]).unit();
}
bool include(P p) { return sign((dir_).det(p - ps[0])) > 0; }
L push(){ // push eps outward
const double eps = 1e-8;
P delta = (ps[1] - ps[0]).rot90().unit() * eps;
return {ps[0] + delta, ps[1] + delta};
}
};
P isLL(L l1,L l2){ return isLL(l1[0],l1[1],l2[0],l2[1]); }
bool parallel(L l0, L l1) { return sign( l0.dir().det( l1.dir() ) ) == 0; }
bool sameDir(L l0, L l1) { return parallel(l0, l1) && sign(l0.dir().dot(l1.dir()) ) == 1; }
bool cmp (P a, P b) {
if (a.quad() != b.quad()) {
return a.quad() < b.quad();
} else {
return sign( a.det(b) ) > 0;
}
}
bool operator < (L l0, L l1) {
if (sameDir(l0, l1)) {
return l1.include(l0[0]);
} else {
return cmp( l0.dir(), l1.dir() );
}
}
bool check(L u, L v, L w) {
return w.include(isLL(u,v));
}
vector<P> halfPlaneIS(vector<L> &l) {
sort(l.begin(), l.end());
deque<L> q;
for (int i = 0; i < (int)l.size(); ++i) {
if (i && sameDir(l[i], l[i - 1])) continue;
while (q.size() > 1 && !check(q[q.size() - 2], q[q.size() - 1], l[i])) q.pop_back();
while (q.size() > 1 && !check(q[1], q[0], l[i])) q.pop_front();
q.push_back(l[i]);
}
while (q.size() > 2 && !check(q[q.size() - 2], q[q.size() - 1], q[0])) q.pop_back();
while (q.size() > 2 && !check(q[1], q[0], q[q.size() - 1])) q.pop_front();
vector<P> ret;
for (int i = 0; i < (int)q.size(); ++i) ret.push_back(isLL(q[i], q[(i + 1) % q.size()]));
return ret;
}
P inCenter(P A, P B, P C) {
double a = (B - C).abs(), b = (C - A).abs(), c = (A - B).abs();
return (A * a + B * b + C * c) / (a + b + c);
}
P circumCenter(P a, P b, P c) {
P bb = b - a, cc = c - a;
double db = bb.abs2(), dc = cc.abs2(), d = 2 * bb.det(cc);
return a - P(bb.y * dc - cc.y * db, cc.x * db - bb.x * dc) / d;
}
P othroCenter(P a, P b, P c) {
P ba = b - a, ca = c - a, bc = b - c;
double Y = ba.y * ca.y * bc.y,
A = ca.x * ba.y - ba.x * ca.y,
x0 = (Y + ca.x * ba.y * b.x - ba.x * ca.y * c.x) / A,
y0 = -ba.x * (x0 - c.x) / ba.y + ca.y;
return {x0, y0};
}
const int N=201000;
struct dice {
int n,f[N];
void read() {
scanf("%d",&n);
rep(i,0,n) scanf("%d",&f[i]);
sort(f,f+n);
}
int query(int x) {
return 2*(lower_bound(f,f+n,x)-f)+(
upper_bound(f,f+n,x)-lower_bound(f,f+n,x));
}
}d1,d2;
int main() {
d1.read(); d2.read();
ll s1=0;
rep(i,0,d1.n) s1+=d2.query(d1.f[i]);
if (s1<d1.n*d2.n) swap(d1,d2);
VI v;
rep(i,0,d1.n) v.pb(d1.f[i]);
rep(i,0,d2.n) v.pb(d2.f[i]);
sort(all(v)); v.erase(unique(all(v)),v.end());
vector<P> ps;
auto add=[&](int x) {
if (x<=0) return;
int s1=d1.query(x),s2=d2.query(x);
ps.pb(P(s1,s2));
};
rep(i,0,SZ(v)) {
add(v[i]); add(v[i]-1); add(v[i]+1);
}
//for (auto x:ps) printf("%f %f\n",x.x,x.y);
ps=convexHull(ps);
//for (auto p:ps) p.write();
int m=SZ(ps);
db v1=2*d2.n;
rep(i,0,m) {
auto p=ps[i],q=ps[(i+1)%m];
if (isMiddle(p.x,d1.n,q.x)) v1=min(v1,isLL(p,q,P(d1.n,0),P(d1.n,1)).y);
}
db v2=0;
rep(i,0,m) {
auto p=ps[i],q=ps[(i+1)%m];
if (isMiddle(p.y,d2.n,q.y)) v2=max(v2,isLL(p,q,P(0,d2.n),P(1,d2.n)).x);
}
printf("%.10f %.10f\n",v1/2/d2.n,v2/2/d1.n);
}
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3944kb
input:
3 2 4 9 3 1 6 8
output:
0.2916666667 0.7500000000
result:
ok 2 numbers
Test #2:
score: 0
Accepted
time: 0ms
memory: 6292kb
input:
3 1 6 8 6 2 2 4 4 9 9
output:
0.2916666667 0.7500000000
result:
ok 2 numbers
Test #3:
score: 0
Accepted
time: 0ms
memory: 6288kb
input:
1 1 1 2
output:
0.7500000000 0.0000000000
result:
ok 2 numbers
Test #4:
score: 0
Accepted
time: 2ms
memory: 6300kb
input:
5 2 2 2 3 3 6 5 5 6 6 6 7
output:
0.5000000000 0.5000000000
result:
ok 2 numbers
Test #5:
score: 0
Accepted
time: 0ms
memory: 6428kb
input:
6 2 2 7 7 9 9 6 3 3 5 5 10 10
output:
0.2500000000 0.7500000000
result:
ok 2 numbers
Test #6:
score: 0
Accepted
time: 0ms
memory: 4088kb
input:
11 12 11 15 9 3 8 18 4 17 13 9 11 8 18 5 15 12 5 11 11 11 3 8
output:
0.4736842105 0.5250000000
result:
ok 2 numbers
Test #7:
score: 0
Accepted
time: 0ms
memory: 3884kb
input:
20 17 18 29 37 5 15 5 9 37 34 12 38 26 29 2 40 23 20 4 12 23 22 2 24 33 6 19 15 31 1 18 30 11 40 13 2 19 5 39 37 22 9 31 26
output:
0.4405034325 0.5541666667
result:
ok 2 numbers
Test #8:
score: 0
Accepted
time: 0ms
memory: 3888kb
input:
40 52 22 29 52 44 3 69 45 40 73 66 51 2 21 20 51 49 34 72 64 69 68 56 4 6 39 29 18 43 6 56 15 22 31 25 78 59 58 40 66 46 52 24 40 12 56 7 4 29 12 26 45 39 27 47 55 45 17 74 28 12 75 77 77 73 41 21 20 23 55 13 58 21 43 11 22 2 67 18 49 56 15 26 25 35 20 61
output:
0.4339714471 0.5652243590
result:
ok 2 numbers
Test #9:
score: 0
Accepted
time: 1ms
memory: 4100kb
input:
76 54 80 5 41 10 124 87 45 67 42 118 33 128 118 21 40 41 3 18 69 131 113 121 106 99 72 108 85 101 108 72 27 13 45 133 137 4 62 30 111 71 39 31 120 79 91 30 58 43 6 60 65 83 83 42 83 26 108 20 133 24 8 125 138 100 21 103 81 45 102 76 44 118 109 18 67 81 4 15 26 65 110 48 126 39 128 82 1 43 134 18 69 ...
output:
0.4211886305 0.5737110634
result:
ok 2 numbers
Test #10:
score: 0
Accepted
time: 0ms
memory: 6280kb
input:
96 11 1 23 7 6 41 8 11 40 5 24 32 40 40 24 24 24 23 17 21 27 21 21 42 1 29 15 45 24 44 50 1 34 11 7 1 12 45 15 3 14 9 25 5 5 20 31 1 41 44 7 27 28 11 24 37 50 7 7 48 1 22 4 5 40 32 33 32 18 18 26 49 28 34 42 29 15 18 4 42 12 21 17 10 47 2 44 40 8 15 7 44 25 5 13 19 88 16 30 20 24 2 26 39 28 1 16 10 ...
output:
0.4818548387 0.5185950413
result:
ok 2 numbers
Test #11:
score: 0
Accepted
time: 0ms
memory: 6456kb
input:
208 31 110 162 24 386 12 262 283 384 392 361 168 58 129 155 45 36 70 2 127 296 380 188 125 148 77 117 272 219 38 79 322 70 91 115 273 228 375 398 353 277 307 258 60 42 60 298 109 60 158 192 159 29 165 103 51 304 313 392 113 62 149 203 152 3 373 206 144 136 214 151 348 287 181 202 367 67 138 388 93 3...
output:
0.4955877991 0.5044270833
result:
ok 2 numbers
Test #12:
score: 0
Accepted
time: 0ms
memory: 6408kb
input:
1170 1311 1924 962 906 1767 1811 1941 1956 1311 364 371 1825 1155 918 1625 1882 1082 198 889 924 1830 244 589 1639 296 1326 1663 379 1479 1369 729 1698 870 1845 217 888 754 858 966 1887 61 1801 1002 1185 1848 610 1914 1742 409 648 781 445 1217 96 1639 1681 1028 923 123 1234 909 569 747 1182 1538 368...
output:
0.4855426993 0.5141050030
result:
ok 2 numbers
Test #13:
score: 0
Accepted
time: 28ms
memory: 8368kb
input:
22713 21796 19194 13993 27763 16658 14855 3720 21919 4029 27311 21879 4981 25538 24982 5230 7339 4299 26976 30753 39183 38686 25483 3489 12855 28134 34477 25105 39953 31801 23937 31229 26076 32962 33965 6078 33306 15915 21622 3643 29726 2542 27764 4554 17811 17329 10576 26448 24416 30696 3230 3730 1...
output:
0.4995293383 0.5004706031
result:
ok 2 numbers
Test #14:
score: 0
Accepted
time: 5ms
memory: 6412kb
input:
100000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...
output:
0.7500000000 0.0000000000
result:
ok 2 numbers
Test #15:
score: 0
Accepted
time: 11ms
memory: 6392kb
input:
1 1 100000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 100...
output:
0.7500000000 0.0000000000
result:
ok 2 numbers
Test #16:
score: 0
Accepted
time: 15ms
memory: 6728kb
input:
100000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...
output:
0.7500000000 0.0000000000
result:
ok 2 numbers
Test #17:
score: -100
Wrong Answer
time: 7ms
memory: 4968kb
input:
100000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...
output:
0.4999950000 0.5000050000
result:
wrong answer 1st numbers differ - expected: '0.5000050', found: '0.4999950', error = '0.0000100'