QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#418867#6734. Click the CircleericmegalovaniaWA 9ms3892kbC++206.8kb2024-05-23 16:14:192024-05-23 16:14:19

Judging History

你现在查看的是最新测评结果

  • [2024-05-23 16:14:19]
  • 评测
  • 测评结果:WA
  • 用时:9ms
  • 内存:3892kb
  • [2024-05-23 16:14:19]
  • 提交

answer

#include<bits/stdc++.h>//大模拟
using namespace std;

#define ONLINE
#ifndef ONLINE
#define debug(...) fprintf(stderr,##__VA_ARGS__)
#else
#define debug(...) ;
#endif

using LL=long long;
using PII=pair<int,int>;

template<typename T>
inline T READ(){
	T x=0; bool f=0; char c=getchar();
	while(!isdigit(c)) f|=(c=='-'),c=getchar();
	while(isdigit(c)) x=x*10+c-'0',c=getchar();
	return f?-x:x;
}
inline int read(){return READ<int>();}
inline LL readLL(){return READ<LL>();}
mt19937 rng(chrono::system_clock::now().time_since_epoch().count());

const double eps=1e-8; //精度,可按需要增加至1e-12之类的
int sign(double x){ //符号函数
	if(fabs(x)<eps) return 0;
	if(x<0) return -1;
	return 1;
}
int dcmp(double x,double y){ //比较函数
	if(fabs(x-y)<eps) return 0;
	if(x<y) return -1;
	return 1;
}

using PDD=pair<double,double>;
#define x first
#define y second

//基本运算符重载
PDD operator +(PDD a,PDD b){return PDD{a.x+b.x,a.y+b.y};}
PDD operator -(PDD a,PDD b){return PDD{a.x-b.x,a.y-b.y};}
PDD operator *(double k,PDD a){return PDD{k*a.x,k*a.y};}
PDD operator *(PDD a,double k){return PDD{k*a.x,k*a.y};}
PDD operator /(PDD a,double k){return PDD{a.x/k,a.y/k};}

double dot(PDD a,PDD b){ //内积
	return a.x*b.x+a.y*b.y;
}

double cross(PDD a,PDD b){ //叉积
	return a.x*b.y-b.x*a.y;
}

//取模(长度)
double get_length(PDD a){
	return sqrt(dot(a,a));
}

//计算向量夹角
double get_angle(PDD a,PDD b){
	return acos(dot(a,b)/get_length(a)/get_length(b));
}

//计算两个向量构成的平行四边形的面积
double area(PDD a,PDD b,PDD c){
	return cross(b-a,c-a);
}

//A绕原点**顺时针**旋转angle(弧度制)
PDD rotate(PDD a,double angle){
	return PDD{a.x*cos(angle) + a.y*sin(angle),
		-a.x*sin(angle) + a.y*cos(angle)};
}

//取直线p+vt, q+wt的交点
//cross(v,w)==0 则两直线平行或者重合,注意特判,这里没加特判
PDD get_line_inter(PDD p, PDD v, PDD q, PDD w){
	PDD u = p - q;
	double t = cross(w, u) / cross(v, w);
	return p + v * t;
}

//点p; 直线由a, b两点表示
//点到直线的距离
double dis2line(PDD p, PDD a, PDD b){
	PDD v1 = b - a, v2 = p - a;
	return fabs(cross(v1, v2) / get_length(v1));
}

//点到线段的距离
double dis2seg(PDD p, PDD a, PDD b){
	if (a == b) return get_length(p - a);
	PDD v1 = b - a, v2 = p - a, v3 = p - b;
	if (sign(dot(v1, v2)) < 0) return get_length(v2);
	if (sign(dot(v1, v3)) > 0) return get_length(v3);
	return dis2line(p, a, b);
}

//点在直线上的投影
PDD get_line_proj(PDD p, PDD a, PDD b){
	PDD v = b - a;
	return a + v * (dot(v, p - a) / dot(v, v));
}

//点是否在线段上
bool on_seg(PDD p, PDD a, PDD b){
	return sign(cross(p - a, p - b)) == 0 && sign(dot(p - a, p - b)) <= 0;
}

//判断两线段是否相交
bool seg_inter(PDD a1, PDD a2, PDD b1, PDD b2){
	double c1 = cross(a2-a1, b1-a1), c2 = cross(a2-a1, b2-a1);
	double c3 = cross(b2-b1, a1-b1), c4 = cross(b2-b1, a2-b1);
	// 有if则允许线段在端点处相交,无if则不允许,根据需要添加
	if(!sign(c1) && !sign(c2) && !sign(c3) && !sign(c4)){
		bool f1 = on_seg(b1, a1, a2);
		bool f2 = on_seg(b2, a1, a2);
		bool f3 = on_seg(a1, b1, b2);
		bool f4 = on_seg(a2, b1, b2);
		bool f = (f1|f2|f3|f4);
		return f;
	}
	return (sign(c1)*sign(c2) < 0 && sign(c3)*sign(c4) < 0);
}


//计算**任意**多边形面积(不一定凸)
double polygon_area(vector<PDD>p){
	double s = 0;
	for (int i = 1; i + 1 < p.size(); i ++ )
		s += cross(p[i] - p[0], p[i + 1] - p[i]);
	return s / 2;
}

double R; //R=2r

//判断滑条和滑条是否相交
bool check1(PDD a,PDD b,PDD c,PDD d){
	if(seg_inter(a,b,c,d)) return 1;
	double dis=min({dis2seg(a,c,d),dis2seg(b,c,d),dis2seg(c,a,b),dis2seg(d,a,b)});
	return dcmp(dis,R)<=0;
}

//判断圆圈和滑条是否相交
bool check2(PDD p,PDD a,PDD b){
	return dcmp(dis2seg(p,a,b),R)<=0;
}

//返回滑条在[s,t]时间内的线段
pair<PDD,PDD>get(int s,int t,array<int,6>u){
	s=max(s,u[4]);
	t=min(t,u[5]);
	double sp,tp;//s_proportion, t_proportion
	sp=1.0*(s-u[4])/(u[5]-u[4]);
	tp=1.0*(t-u[4])/(u[5]-u[4]);
	PDD p0={u[0],u[1]},vec={u[2]-u[0],u[3]-u[1]};
	return {p0+sp*vec,p0+tp*vec};
}

int main(){
	int n=read(),r=read(),d=read(); R=2.0*r;
	vector<array<int,3>>a;
	vector<array<int,6>>b;
	for(int i=1;i<=n;i++){
		if(read()==1){
			static array<int,3>u;
			u[0]=read(),u[1]=read(),u[2]=read();
			a.push_back(u);
		}
		else{
			static array<int,6>u;
			u[0]=read(),u[1]=read(),u[2]=read(),
			u[3]=read(),u[4]=read(),u[5]=read();
			b.push_back(u);
		}
	}
	const int t_inf=1e4+1;
	int ans=b.size();
	for(int i=0;i<a.size();i++){
		for(int j=i+1;j<a.size();j++){
			int tl,tr;
			tl=max({a[i][2]-d,a[j][2]-d});
			tr=min({a[i][2]+d,a[j][2]+d});
			if(tl>tr) continue;
			//circle & circle
			int dx=a[i][0]-a[j][0],dy=a[i][1]-a[j][1];
			if(1ll*dx*dx+1ll*dy*dy<=4ll*r*r) ans++;
		}
	}
	for(int i=0;i<b.size();i++){
		for(int j=i+1;j<b.size();j++){
			int tl,tr;
			tl=max({b[i][4]-d,b[j][4]-d});
			tr=min({b[i][5]+d,b[j][5]+d});
			if(tl>tr) continue;
			//slide & slide
			ans+=check1({b[i][0],b[i][1]},{b[i][2],b[i][3]},{b[j][0],b[j][1]},{b[j][2],b[j][3]});
			//k-circle & slide
			auto [Si,Ti]=get(tl,tr,b[i]);
			ans+=check1(Si,Ti,{b[j][0],b[j][1]},{b[j][2],b[j][3]});
			auto [Sj,Tj]=get(tl,tr,b[j]);
			ans+=check1(Sj,Tj,{b[i][0],b[i][1]},{b[i][2],b[i][3]});
			//k-circle & k-circle
			PDD delta_s=Si-Sj,delta_vec=((Ti-Si)-(Tj-Sj));
			static auto calc=[&](double x)->double{
				//(Si+veci*x)-(Sj+vecj*x)
				return get_length(delta_s+delta_vec*x);
			};
			debug("Si(%.3lf,%.3lf) Ti(%.3lf,%.3lf) Sj(%.3lf,%.3lf) Tj(%.3lf,%.3lf)\n",
				Si.first,Si.second,Ti.first,Ti.second,Sj.first,Sj.second,Tj.first,Tj.second);
			debug("delta_s=(%.3lf,%.3lf) delta_vec=(%.3lf,%.3lf)\n",
				delta_s.first,delta_s.second,delta_vec.first,delta_vec.second);
			double l=0,r=1,mid,lmid,rmid,fl,fr,dis=1e5;
			while(r-l>eps){
				mid=(l+r)/2;
				lmid=mid-eps,rmid=mid+eps;
				fl=calc(lmid),fr=calc(rmid);
				if(fl<fr) r=mid;
				else l=mid;
				debug("f(%.3lf)=%.12lf f(%.3lf)=%.12lf\n",lmid,fl,rmid,fr);
				dis=min({dis,fl,fr});
			}
			debug("i=%d j=%d dis=%.12lf\n",i,j,dis);
			ans+=(dcmp(dis,R)<=0);
		}
	}
	for(int i=0;i<a.size();i++){
		for(int j=0;j<b.size();j++){
			int tl,tr;
			tl=max({a[i][2]-d,b[j][4]-d});
			tr=min({a[i][2]+d,b[j][5]+d});
			if(tl>tr) continue;
			//circle & slide
			ans+=check2({a[i][0],a[i][1]},{b[j][0],b[j][1]},{b[j][2],b[j][3]});
			//circle & k-circle
			auto [S,T]=get(tl,tr,b[j]);
			ans+=check2({a[i][0],a[i][1]},S,T);
		}
	}
	printf("%d",ans);
	return 0;
}

/* stuff you should look for
* int overflow, array bounds
* special cases (n=1?)
* do smth instead of nothing and stay organized
* WRITE STUFF DOWN
* DON'T GET STUCK ON ONE APPROACH
*/

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3660kb

input:

2 1 1
1 1 1 2
1 2 2 3

output:

1

result:

ok 1 number(s): "1"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3744kb

input:

2 1 1
1 1 1 2
1 3 2 3

output:

0

result:

ok 1 number(s): "0"

Test #3:

score: 0
Accepted
time: 0ms
memory: 3728kb

input:

2 1 1
1 3 3 2
2 5 5 5 1 2 4

output:

3

result:

ok 1 number(s): "3"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3892kb

input:

2 1 1
2 1 1 1 5 2 4
2 5 5 5 1 2 4

output:

2

result:

ok 1 number(s): "2"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3792kb

input:

2 1 1
2 10 1 10 20 2 4
2 1 10 20 10 2 4

output:

6

result:

ok 1 number(s): "6"

Test #6:

score: -100
Wrong Answer
time: 9ms
memory: 3824kb

input:

1000 8 4
1 8323 2820 943
1 8246 2850 944
1 8177 2880 941
1 8154 2866 944
2 8325 8146 2865 2846 943 944
1 8349 2891 939
2 8176 8344 2888 2692 940 945
1 8191 2732 945
1 8144 2668 945
2 8182 8191 2889 2844 939 940
1 8173 2687 941
1 8241 2870 945
2 8266 8344 2910 2667 942 943
1 8169 2863 939
1 8349 2921...

output:

22811

result:

wrong answer 1st numbers differ - expected: '22721', found: '22811'