QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#418779#8669. 正方形计数zhicheng100 ✓3873ms4316kbC++146.1kb2024-05-23 15:41:282024-05-23 15:41:29

Judging History

你现在查看的是最新测评结果

  • [2024-05-23 15:41:29]
  • 评测
  • 测评结果:100
  • 用时:3873ms
  • 内存:4316kb
  • [2024-05-23 15:41:28]
  • 提交

answer

#include<bits/stdc++.h>
using namespace std;
const int N=15;
const double eps=1e-9;
int ss[N<<2];
double ang[N<<2];
struct point{
	double x,y;
}a[N],s[N<<2],sx,sy;
pair<point,point>p[N<<2],q[N<<2],pp[N<<2];
inline bool operator==(point a,point b){
	return fabs(a.x-b.x)<eps&&fabs(a.y-b.y)<eps;
}
inline point operator+(point a,point b){
	return {a.x+b.x,a.y+b.y};
}
inline point operator-(point a,point b){
	return {a.x-b.x,a.y-b.y};
}
inline point operator*(point a,double b){
	return {a.x*b,a.y*b};
}
inline point operator/(point a,double b){
	return {a.x/b,a.y/b};
}
inline double operator^(point a,point b){
	return a.x*b.y-a.y*b.x;
}
inline double angle(pair<point,point>a){
	return atan2(a.second.y-a.first.y,a.second.x-a.first.x);
}
inline point intersect(pair<point,point>a,pair<point,point>b){
	return a.first+(a.second-a.first)/(((a.second-b.first)^(b.second-b.first))+((b.second-b.first)^(a.first-b.first)))*((b.second-b.first)^(a.first-b.first));
}
inline double area(point *q,int n){
	double ans=0;
	for(int i=2;i<=n-1;i++){
		ans+=((q[i]-q[1])^(q[i+1]-q[1]));
	}
	return ans/2;
}
int op;
inline bool check(pair<point,point>a,pair<point,point>b,pair<point,point>c){
	point s=intersect(b,c);
	if(op){
		return ((a.second-s)^(a.first-s))>=-eps;
	}
	return ((a.second-s)^(a.first-s))>eps;
}
inline int Half_Plane_Intersection(pair<point,point> *p,pair<point,point> *q,int n){
	int cnt=0,front=1,back=2;
	static pair<point,point>s[N<<2],d[N<<2],tmp[N<<2];
	for(int i=1;i<=n;i++){
		tmp[i]=p[i];
	}
	s[++cnt]=p[1];
	for(int i=2;i<=n;i++){
		if(fabs(ang[ss[i]]-ang[ss[i-1]])>eps){
			s[++cnt]=p[i];
		}
	}
	d[1]=s[1];
	d[2]=s[2];
	for(int i=3;i<=cnt;i++){
		while(front<back&&check(s[i],d[back],d[back-1])){
			back--;
		}
		while(front<back&&check(s[i],d[front],d[front+1])){
			front++;
		}
		d[++back]=s[i];
	}
	while(front<back&&check(d[front],d[back],d[back-1])){
		back--;
	}
	while(front<back&&check(d[back],d[front],d[front+1])){
		front++;
	}
	cnt=0;
	for(int i=front;i<=back;i++){
		q[++cnt]=d[i];
	}
	for(int i=1;i<=n;i++){
		p[i]=tmp[i];
	}
	return cnt;
}
inline bool check1(point a,pair<point,point> *p,int n){
	for(int i=1;i<=n;i++){
		if(((p[i].second-a)^(p[i].first-a))>eps){
			return 0;
		}
	}
	return 1;
}
inline int f(int a,int b,int c,int n){
	if(a>=c||b>=c){
		return f(a%c,b%c,c,n)+a/c*n*(n+1)/2+(n+1)*(b/c);
	}
	int m=(a*n+b)/c;
	if(m==0){
		return 0;
	}
	return n*m-f(c,c-b-1,a,m-1);
}
inline int solve(point p,int dx,int dy,int l,int r){
	int del,d=abs(__gcd(dx,dy)),ans=0;
	dx/=d;
	dy/=d;
	del=max(double(0),-floor(p.y-p.x*dy/dx));
	p.y+=del;
	if(dy<0){
		dy=-dy;
		p.x=-p.x;
		swap(l,r);
		l=-l;
		r=-r;
		p.x+=-l;
		r+=-l;
		l=0;
	}
	return f(dy,dx*p.y-p.x*dy,dx,r)-f(dy,dx*p.y-p.x*dy,dx,l-1)-del*(r-l+1)+(r-l+1);
}
inline int get(point p,int dx,int dy,int l,int r){
	dx/=__gcd(dx,dy);
	dx=abs(dx);
	return floor((r-p.x)/dx)-floor((l-1-p.x)/dx);
}
inline bool isint(double x){
	return fabs(x-floor(x))<eps||fabs(x-ceil(x))<eps;
}
int main(){
	int n,maxx=0,cnt,cntt,cntp;
	long long ans=0;
	scanf("%d",&n);
	for(int i=1;i<=n;i++){
		scanf("%lf%lf",&a[i].x,&a[i].y);
		maxx=max({(double)maxx,a[i].x,a[i].y});
	}
	a[n+1]=a[1];
	reverse(a+1,a+n+2);
	for(int i=0;i<=maxx;i++){
		for(int j=1;j<=maxx-i;j++){
			cntp=0;
			for(int k=1;k<=n;k++){
				p[++cntp]={a[k],a[k+1]};
				p[++cntp]={a[k]+(point){-i,-j},a[k+1]+(point){-i,-j}};
				p[++cntp]={a[k]+(point){-i-j,i-j},a[k+1]+(point){-i-j,i-j}};
				p[++cntp]={a[k]+(point){-j,i},a[k+1]+(point){-j,i}};
			}
			for(int i=1;i<=cntp;i++){
				ang[i]=angle(p[i]);
				ss[i]=i;
				pp[i]=p[i];
			}
			sort(ss+1,ss+cntp+1,[](int a,int b){
				if(fabs(ang[a]-ang[b])>eps){
					return ang[a]<ang[b];
				}
				return ((p[a].second-p[a].first)^(p[b].first-p[a].first))<0;
			});
			for(int i=1;i<=cntp;i++){
				p[i]=pp[ss[i]];
			}
			op=0;
			cnt=Half_Plane_Intersection(p,q,cntp);
			cntt=1;
			s[1]=intersect(q[cnt],q[1]);
			for(int k=1;k<=cnt-1;k++){
				s[++cntt]=intersect(q[k],q[k+1]);
				if(s[cntt]==s[cntt-1]){
					cntt--;
				}
			}
			while(cntt!=1&&s[cntt]==s[1]){
				cntt--;
			}
			s[cntt+1]=s[1];
			if(cntt==2&&s[1]==s[2]){
				cntt=1;
			}
			int fl=0;
			for(int k=1;k<=cntt;k++){
				if(isinf(s[k].x)||isnan(s[k].x)||!check1(s[k],p,cntp)){
					fl=1;
				}
			}
			if(fl){
				for(int k=1;k<=cntt;k++){
					if(!(isinf(s[k].x)||isnan(s[k].x)||!check1(s[k],p,cntp))&&isint(s[k].x)&&isint(s[k].y)){
						ans++;
					}
				}
				continue;
			}
			if(cntt==1){
				if(isint(s[1].x)&&isint(s[1].y)){
					ans++;
				}
				continue;
			}
			else if(cntt==2){
				cnt=Half_Plane_Intersection(p,q,cntp);
				cntt=1;
				for(int k=1;k<=cnt-1;k++){
					s[++cntt]=intersect(q[k],q[k+1]);
				}
				s[cntt+1]=s[1]=intersect(q[cnt],q[1]);
				goto lass;
			}
			op=1;
			cnt=Half_Plane_Intersection(p,q,cntp);
			cntt=1;
			for(int k=1;k<=cnt-1;k++){
				s[++cntt]=intersect(q[k],q[k+1]);
			}
			s[cntt+1]=s[1]=intersect(q[cnt],q[1]);
			if(cntt==2&&s[1]==s[2]){
				cntt=1;
			}
			lass:;
			int las=ans;
			q[0]=q[cnt];
			q[cnt+1]=q[1];
			for(int k=1;k<=cnt;k++){
				sx=s[k];
				sy=s[k+1];
				if(q[k].first.x==q[k].second.x){
					if(q[k].first.y>q[k].second.y){
						ans+=floor(sx.y+eps)+1;
					}
					else{
						ans-=floor(sx.y-eps)+1;
					}
				}
				else{
					if(q[k].first.x<q[k].second.x){
						ans-=solve(q[k].first,q[k].second.x-q[k].first.x,q[k].second.y-q[k].first.y,ceil(sx.x-eps),floor(sy.x-eps));
						ans+=get(q[k].first,q[k].second.x-q[k].first.x,q[k].second.y-q[k].first.y,ceil(sx.x-eps),floor(sy.x-eps));
						if(q[k+1].first.x>q[k+1].second.x){
							if(isint(s[k+1].x)){
								ans-=floor(s[k+1].y-eps)+1;
							}
						}
						if(q[k-1].first.x>q[k-1].second.x){
							if(isint(s[k].x)){
								ans+=floor(s[k].y-eps)+1+isint(s[k].y);
							}
						}
					}
					else{
						ans+=solve(q[k].first,q[k].first.x-q[k].second.x,q[k].first.y-q[k].second.y,ceil(sy.x+eps),floor(sx.x+eps));
					}
				}
			}
		}
	}
	printf("%lld",ans);
}

Details

Tip: Click on the bar to expand more detailed information

Subtask #1:

score: 10
Accepted

Test #1:

score: 10
Accepted
time: 754ms
memory: 4132kb

input:

4
131 603
131 1828
1919 1828
1919 603

output:

361182910200

result:

ok 1 number(s): "361182910200"

Test #2:

score: 0
Accepted
time: 142ms
memory: 4088kb

input:

4
239 211
239 962
261 962
261 211

output:

1498772

result:

ok 1 number(s): "1498772"

Test #3:

score: 0
Accepted
time: 1077ms
memory: 4080kb

input:

4
0 0
0 2000
2000 2000
2000 0

output:

1336001667000

result:

ok 1 number(s): "1336001667000"

Test #4:

score: 0
Accepted
time: 94ms
memory: 4112kb

input:

4
36 771
36 786
672 786
672 771

output:

427720

result:

ok 1 number(s): "427720"

Test #5:

score: 0
Accepted
time: 13ms
memory: 4208kb

input:

4
0 100
100 200
200 100
100 0

output:

34001650

result:

ok 1 number(s): "34001650"

Subtask #2:

score: 25
Accepted

Test #6:

score: 25
Accepted
time: 570ms
memory: 4272kb

input:

3
131 603
131 1828
1919 603

output:

63739309181

result:

ok 1 number(s): "63739309181"

Test #7:

score: 0
Accepted
time: 124ms
memory: 4148kb

input:

3
239 211
239 962
261 211

output:

353073

result:

ok 1 number(s): "353073"

Test #8:

score: 0
Accepted
time: 651ms
memory: 4216kb

input:

3
0 0
0 2000
2000 0

output:

222889277611

result:

ok 1 number(s): "222889277611"

Test #9:

score: 0
Accepted
time: 81ms
memory: 4308kb

input:

3
36 771
36 786
672 771

output:

98847

result:

ok 1 number(s): "98847"

Test #10:

score: 0
Accepted
time: 2ms
memory: 4236kb

input:

3
0 0
0 100
100 0

output:

1473186

result:

ok 1 number(s): "1473186"

Subtask #3:

score: 15
Accepted

Test #11:

score: 15
Accepted
time: 1ms
memory: 4212kb

input:

8
0 13
4 15
15 15
15 6
13 1
12 0
5 0
0 6

output:

4047

result:

ok 1 number(s): "4047"

Test #12:

score: 0
Accepted
time: 1ms
memory: 4192kb

input:

8
0 4
1 15
2 15
15 14
15 4
14 0
1 0
0 2

output:

4200

result:

ok 1 number(s): "4200"

Test #13:

score: 0
Accepted
time: 0ms
memory: 4312kb

input:

5
7 15
15 13
15 0
3 0
0 15

output:

3635

result:

ok 1 number(s): "3635"

Test #14:

score: 0
Accepted
time: 1ms
memory: 4316kb

input:

8
0 12
2 14
7 15
13 15
15 10
15 1
8 0
0 0

output:

4511

result:

ok 1 number(s): "4511"

Test #15:

score: 0
Accepted
time: 0ms
memory: 4160kb

input:

6
0 11
3 15
7 15
15 12
10 0
0 0

output:

3006

result:

ok 1 number(s): "3006"

Test #16:

score: 0
Accepted
time: 0ms
memory: 4240kb

input:

5
0 0
0 2
1 2
2 1
2 0

output:

4

result:

ok 1 number(s): "4"

Subtask #4:

score: 20
Accepted

Dependency #3:

100%
Accepted

Test #17:

score: 20
Accepted
time: 72ms
memory: 4268kb

input:

8
49 299
144 300
300 260
250 15
115 0
30 0
23 19
0 85

output:

443602646

result:

ok 1 number(s): "443602646"

Test #18:

score: 0
Accepted
time: 73ms
memory: 4192kb

input:

8
0 133
103 300
130 300
257 294
297 227
300 150
277 40
161 4

output:

351466521

result:

ok 1 number(s): "351466521"

Test #19:

score: 0
Accepted
time: 73ms
memory: 4100kb

input:

8
76 286
114 300
300 300
300 205
291 0
47 0
4 57
2 235

output:

605026927

result:

ok 1 number(s): "605026927"

Test #20:

score: 0
Accepted
time: 67ms
memory: 4248kb

input:

8
0 102
40 274
282 300
300 234
267 0
34 0
6 57
0 86

output:

497330741

result:

ok 1 number(s): "497330741"

Test #21:

score: 0
Accepted
time: 58ms
memory: 4300kb

input:

7
0 288
156 300
212 300
265 176
300 86
278 0
0 36

output:

446722651

result:

ok 1 number(s): "446722651"

Subtask #5:

score: 15
Accepted

Dependency #4:

100%
Accepted

Test #22:

score: 15
Accepted
time: 281ms
memory: 4204kb

input:

5
257 800
766 800
800 353
667 0
42 0

output:

18881369614

result:

ok 1 number(s): "18881369614"

Test #23:

score: 0
Accepted
time: 408ms
memory: 4268kb

input:

8
691 800
737 795
800 651
372 98
136 266
118 318
24 629
12 753

output:

8760058886

result:

ok 1 number(s): "8760058886"

Test #24:

score: 0
Accepted
time: 397ms
memory: 4188kb

input:

8
718 800
740 800
800 726
800 670
711 367
595 150
86 0
57 136

output:

3064355626

result:

ok 1 number(s): "3064355626"

Test #25:

score: 0
Accepted
time: 454ms
memory: 4228kb

input:

8
0 347
16 449
364 798
674 800
750 800
797 14
195 0
0 70

output:

23587042437

result:

ok 1 number(s): "23587042437"

Test #26:

score: 0
Accepted
time: 504ms
memory: 4272kb

input:

8
322 800
596 800
686 777
800 280
764 69
396 0
46 179
0 660

output:

23185884331

result:

ok 1 number(s): "23185884331"

Subtask #6:

score: 15
Accepted

Dependency #1:

100%
Accepted

Dependency #2:

100%
Accepted

Dependency #3:

100%
Accepted

Dependency #4:

100%
Accepted

Dependency #5:

100%
Accepted

Test #27:

score: 15
Accepted
time: 3060ms
memory: 4252kb

input:

8
0 1150
314 2000
1101 2000
1617 1607
1778 551
738 0
607 10
0 1011

output:

577130875850

result:

ok 1 number(s): "577130875850"

Test #28:

score: 0
Accepted
time: 3384ms
memory: 4192kb

input:

8
0 1841
1526 2000
1981 1680
1968 678
1893 26
973 0
616 315
524 434

output:

735496008519

result:

ok 1 number(s): "735496008519"

Test #29:

score: 0
Accepted
time: 2428ms
memory: 4204kb

input:

6
0 258
10 2000
1730 2000
2000 1510
1973 0
0 129

output:

1203935109430

result:

ok 1 number(s): "1203935109430"

Test #30:

score: 0
Accepted
time: 2624ms
memory: 4300kb

input:

7
200 2000
1686 2000
1951 1878
2000 863
1422 0
21 0
0 1015

output:

1100462975231

result:

ok 1 number(s): "1100462975231"

Test #31:

score: 0
Accepted
time: 3873ms
memory: 4264kb

input:

8
701 2000
1449 2000
1847 1928
2000 1496
1987 668
1588 108
263 0
0 1985

output:

997591862206

result:

ok 1 number(s): "997591862206"

Test #32:

score: 0
Accepted
time: 3211ms
memory: 4224kb

input:

8
15 2000
1235 2000
1545 1886
1970 1526
1828 427
1238 97
372 0
0 1786

output:

816089046494

result:

ok 1 number(s): "816089046494"

Test #33:

score: 0
Accepted
time: 2404ms
memory: 4100kb

input:

7
0 1685
1331 2000
2000 1941
2000 1310
1757 631
21 113
0 575

output:

633230324466

result:

ok 1 number(s): "633230324466"

Test #34:

score: 0
Accepted
time: 2629ms
memory: 4236kb

input:

8
0 650
0 1350
650 2000
1350 2000
2000 1350
2000 650
1350 0
650 0

output:

900037062925

result:

ok 1 number(s): "900037062925"