QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#417440 | #8721. 括号序列 | Afterlife | WA | 0ms | 3728kb | C++20 | 6.4kb | 2024-05-22 18:52:11 | 2024-05-22 18:52:12 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=998244353;
inline int inc(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline int dec(int x,int y){return x-y<0?x-y+mod:x-y;}
inline int mul(int x,int y){return (ll)x*y%mod;}
inline int qpow(int x,int y){
int res=1;
for(;y;y>>=1)res=y&1?mul(res,x):res,x=mul(x,x);
return res;
}
inline int inv(int x){return qpow(x,mod-2);}
const int N=1<<20;
namespace NTT{
int re[N],w[2][N];
inline int getre(int n){
int len=1,bit=0;
while(len<n)len<<=1,++bit;
for(int i=1;i<len;++i)re[i]=(re[i>>1]>>1)|((i&1)<<(bit-1));
w[0][0]=w[1][0]=1,w[0][1]=qpow(3,(mod-1)/len),w[1][1]=inv(w[0][1]);
for(int o=0;o<2;++o)for(int i=2;i<len;++i)
w[o][i]=mul(w[o][i-1],w[o][1]);
return len;
}
inline void NTT(int* a,int n,int o=0){
for(int i=1;i<n;++i)if(i<re[i])swap(a[i],a[re[i]]);
int R;
for(int k=1;k<n;k<<=1)
for(int i=0,t=k<<1,st=n/t;i<n;i+=t)
for(int j=0,nw=0;j<k;++j,nw+=st)
R=mul(a[i+j+k],w[o][nw]),a[i+j+k]=dec(a[i+j],R),a[i+j]=inc(a[i+j],R);
if(o){
R=inv(n);
for(int i=0;i<n;++i)a[i]=mul(a[i],R);
}
}
int t0[N],t1[N],t2[N];
inline void multi(const int* a,const int* b,int* c,int n,int m){
if(n+m<=32){
memset(c,0,sizeof(int)*(n+m+1));
for(int i=0;i<=n;++i)
for(int j=0;j<=m;++j)
c[i+j]=inc(c[i+j],mul(a[i],b[j]));
return;
}
int len=getre(n+m+1);
memset(t0,0,sizeof(int)*len),memcpy(t0,a,sizeof(int)*(n+1));
memset(t1,0,sizeof(int)*len),memcpy(t1,b,sizeof(int)*(m+1));
NTT(t0,len),NTT(t1,len);
for(int i=0;i<len;++i)t0[i]=mul(t0[i],t1[i]);
NTT(t0,len,1);
memcpy(c,t0,sizeof(int)*(n+m+1));
}
inline void inver(const int* a,int* b,int n){
int len=1;
while(len<=n)len<<=1;
memset(t0,0,sizeof(int)*len),memcpy(t0,a,sizeof(int)*(n+1));
memset(t1,0,sizeof(int)*(len<<1));
memset(t2,0,sizeof(int)*(len<<1));
t2[0]=inv(t0[0]);
for(int k=1;k<=len;k<<=1){
memcpy(t1,t0,sizeof(int)*k);
getre(k<<1);
NTT(t1,k<<1),NTT(t2,k<<1);
for(int i=0;i<(k<<1);++i)t2[i]=mul(t2[i],dec(2,mul(t1[i],t2[i])));
NTT(t2,k<<1,1);
for(int i=k;i<(k<<1);++i)t2[i]=0;
}
memcpy(b,t2,sizeof(int)*(n+1));
}
} //namespace NTT
struct poly:public vector<int>{
inline int time()const{return size()-1;}
inline poly(int tim=0,int c=0){
resize(tim+1);
if(tim>=0)at(0)=c;
}
poly(vector<int>::iterator a,vector<int>::iterator b) {
resize(b - a + 1);
for(int i = 0;i < size();i++) at(i) = *(a + i) ;
}
inline poly operator%(const int& n)const{
poly r(*this);
r.resize(n);
return r;
}
inline poly operator%=(const int& n){
resize(n);
return *this;
}
inline poly operator+(const poly& p)const{
int n=time(),m=p.time();
poly r(*this);
if(n<m)r.resize(m+1);
for(int i=0;i<=m;++i)r[i]=inc(r[i],p[i]);
return r;
}
inline poly operator-(const poly& p)const{
int n=time(),m=p.time();
poly r(*this);
if(n<m)r.resize(m+1);
for(int i=0;i<=m;++i)r[i]=dec(r[i],p[i]);
return r;
}
inline poly operator*(const poly& p)const{
poly r(time()+p.time());
NTT::multi(&((*this)[0]),&p[0],&r[0],time(),p.time());
return r;
}
inline poly operator*(const int& k)const{
poly r(*this);
int n=time();
for(int i=0;i<=n;++i)r[i]=mul(r[i],k);
return r;
}
inline poly operator~()const{
poly r(*this);
reverse(r.begin(),r.end());
return r;
}
};
inline poly inv(const poly& a){
poly r(a.time());
NTT::inver(&a[0],&r[0],a.time());
return r;
}
inline poly der(const poly& a){
int n=a.time();
poly r(n-1);
for(int i=1;i<=n;++i)r[i-1]=mul(a[i],i);
return r;
}
int _[N];
inline poly itr(const poly& a){
int n=a.time();
poly r(n+1);
_[1]=1;
for(int i=2;i<=n+1;++i)_[i]=mul(_[mod%i],mod-mod/i);
for(int i=0;i<=n;++i)r[i+1]=mul(a[i],_[i+1]);
return r;
}
inline poly ln(const poly& a){
return itr(der(a)*inv(a)%a.time());
}
inline poly exp(const poly& a){
poly r(0,1);
int n=a.time(),k=1;
while(r.time()<n)
r%=k,r=r*(a%k-ln(r)+poly(0,1))%k,k<<=1;
return r%(n+1);
}
inline poly qpow(const poly& a,int k){
return exp(ln(a)*k);
}
inline poly operator/(const poly& f,const poly& g){
int n=f.time()-g.time()+1;
return ~((~f)*inv((~g)%n)%n);
}
inline poly operator%(const poly& f,const poly& g){
if(f.time()<g.time())return f;
return (f-g*(f/g)%g.time())%g.time();
}
int t[250005] , rt[250005];
poly f , g;
void solve(int l,int r) {
// printf("ON %d %d\n" , l , r);
if(l == r) {
if(l) f[l] = 1LL * f[l] * qpow(l , mod - 2) % mod ;
return ;
}
int md = (l + r >> 1);
solve(l , md) ;
if(l == 0) {
poly a(f.begin() , f.begin() + md) ;
poly b = a * a;
b.resize(r) ;
poly c = b * a;
for(int i = md + 1 ; i <= r;i++) {f[i] = ((ll)f[i] + b[i - 1] + c[i - 1]) %mod;}
}
else {
poly a(f.begin() + l , f.begin() + md) ;
poly b(f.begin() , f.begin() + r - l + 1) ;
poly d = a * b; d.resize(r - l);
poly c = d * b;
assert(r - l + 1 <= md) ;
// printf("AS %d\n",a.size()) ;
// printf("A %d %d : %d\n",l,r,md);
for(int i = md + 1 ; i <= r ;i++) {
// printf("%d %d %d\n",i,1LL * f[i] * t[i - 1] % mod, 1LL * c[i-1 - l] * t[i - 1] % mod) ;
f[i] = (f[i] + 3LL * c[i - 1 - l] + 2LL * d[i - l - 1]) % mod;
}
}
solve(md + 1 , r);
}
void solve2(int l,int r) {
if(l == r) {
if(l) g[l] = 1LL * g[l] * qpow(l , mod - 2) % mod;
return ;
}
int md = (l + r >> 1);
solve2(l , md) ;
if(l == 0) {
poly a(g.begin() , g.begin() + md) ;
poly b(f.begin() , f.begin() + md) ;
b = a * b;
b.resize(r);
b = b * a;
for(int i = md + 1;i <= r;i++) {
g[i] = (g[i] + b[i - 1]) % mod;
}
}
else {
poly a(g.begin() , g.begin() + r - l + 1);
poly b(f.begin() , f.begin() + r - l + 1);
poly c(g.begin() + l , g.begin() + md) ;
poly d(f.begin() + l , f.begin() + md);
// printf("IN %d %d\n",l,r);
poly e = c * b* 2 + d * a;
e.resize(r - l) ;
e = e * a;
for(int i = md + 1;i <= r;i++) {
g[i] = (g[i] + e[i - l - 1]) % mod;
}
}
solve2(md + 1 , r);
}
int main() {
int n ; cin >> n;
t[0] =1 ; rt[0] = 1;
for(int i = 1;i <= n + 2;i++) t[i] = 1LL * t[i - 1] * i % mod , rt[i] = qpow(t[i] , mod - 2);
f.resize(n + 1); f[0] = 1;
g.resize(n + 1) ; g[0] = 1;
solve(0 , n);
for(int i = 0;i <= n;i++) {
// f[i] = 1LL * f[i] * t[i] % mod;
printf("%d ",1LL * f[i] * t[i] %mod) ;
}
printf("\n");
solve2(0 , n);
cout << 1LL*g[n]*t[n] % mod << '\n';
}
详细
Test #1:
score: 0
Wrong Answer
time: 0ms
memory: 3728kb
input:
3
output:
1 2 10 82 28
result:
wrong answer 1st numbers differ - expected: '28', found: '1'