QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#408868 | #6763. Triangle Pendant | ping222 | WA | 2ms | 3960kb | C++17 | 4.5kb | 2024-05-11 09:59:50 | 2024-05-11 09:59:52 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
struct dot
{
double x;
double y;
double z;
};
struct vect
{
double x;
double y;
double z;
};
double abs_vect(vect v)
//向量的模
{
return sqrt(v.x*v.x+v.y*v.y+v.z*v.z);
}
double dis(dot a,dot b)
//两点距离
{
vect t;
t.x=a.x-b.x;
t.y=a.y-b.y;
t.z=a.z-b.z;
return abs_vect(t);
}
double p_vect(vect v1,vect v2)
//向量点积
{
return v1.x*v2.x+v1.y*v2.y+v1.z*v2.z;
}
double count(dot D,dot A,vect DE)
//计算向量DA在向量HE上的投影长度
{
vect DA;
DA.x=A.x-D.x;
DA.y=A.y-D.y;
DA.z=A.z-D.z;
if (abs_vect(DE)>-1e-10 && abs_vect(DE)<1e-10)
return 0;
return p_vect(DA,DE)/abs_vect(DE);
}
bool check(int a,int b,int c)
//三角形判定
{
if (a+b<=c || a+c<=b || b+c<=a)
return false;
return true;
}
void count2(int len_AD,int len_BD,dot &A,dot &B,dot &C,dot &D)
//两条线(AD,BD)绷直,求D点坐标
{
double a=len_BD,b=len_AD,c=dis(A,B);
dot A_,B_,C_;
A_.x=0; A_.y=0;
B_.x=c; B_.y=0;
C_.x=(double)(a*a-b*b-c*c)/(-2*c);
C_.y=sqrt(b*b-C_.x*C_.x);
if ((B.x-A.x)*(C.y-A.y)-(B.y-A.y)*(C.x-A.x)>0)
C_.y*=-1;
double rot_a=B.x-A.x,rot_b=B.y-A.y; //旋转向量
double len=sqrt(rot_a*rot_a+rot_b*rot_b);
rot_a=rot_a/len;
rot_b=rot_b/len;
D.x=A.x+(C_.x*rot_a-C_.y*rot_b);
D.y=A.y+(C_.x*rot_b+C_.y*rot_a);
D.z=0;
}
void count1(int len_AD,dot &A,dot &B,dot &C,dot &D,dot &E,double &ha,double &hb,double &hc)
//一条线(AD)绷直,直接求结果
{
vect AE;
AE.x=E.x-A.x;
AE.y=E.y-A.y;
AE.z=E.z-A.z;
double len=abs_vect(AE);
double m=len_AD/len;
AE.x*=m;
AE.y*=m;
AE.z*=m;
D.x=A.x-AE.x;
D.y=A.y-AE.y;
D.z=0;
/*
ha=len_AD;
hb=len_AD+count(A,B,AE);
hc=len_AD+count(A,C,AE);
*/
}
void s_count(int len_AD,int len_BD,int len_CD,dot &A,dot &B,dot &C,dot &D,dot &E,double &ha,double &hb,double &hc)
//不可构成三棱锥,且AD是最短边时,求解
{
count1(len_AD,A,B,C,D,E,ha,hb,hc);
bool check_b=check(len_AD,len_BD,dis(A,B));
bool check_c=check(len_AD,len_CD,dis(A,C));
if (dis(B,D)>len_BD && check_b)
count2(len_AD,len_BD,A,B,C,D);
else if (dis(C,D)>len_CD && check_c)
count2(len_AD,len_CD,A,C,B,D);
else
{
//count1(len_AD,A,B,C,D,E,ha,hb,hc);
//return;
}
vect DE;
DE.x=E.x-D.x;
DE.y=E.y-D.y;
DE.z=E.z-D.z;
ha=count(D,A,DE);
hb=count(D,B,DE);
hc=count(D,C,DE);
return;
}
void solve()
{
int x,y,z,a,b,c;
double ha,hb,hc;
cin >> x >> y >> z >> a >> b >> c;
dot A,B,C,D,E;
A.x=0; A.y=0;
B.x=c; B.y=0;
C.x=(double)(a*a-b*b-c*c)/(-2*c);
C.y=sqrt(b*b-C.x*C.x);
A.z=B.z=C.z=0;
E.x=(A.x+B.x+C.x)/3.0;
E.y=(A.y+B.y+C.y)/3.0;
E.z=0;
bool check_a=check(y,z,a);
bool check_b=check(x,z,b);
bool check_c=check(x,y,c);
bool check=(check_a+check_b+check_c==3);
if (!check_a && check_b && check_c && y+z==a) check=1;
if (!check_b && check_a && check_c && x+z==b) check=1;
if (!check_c && check_b && check_a && y+x==c) check=1;
D.x=(double)(y*y-x*x-c*c)/(-2*c);
D.y=(double)(z*z-x*x-(C.x)*(C.x)-(C.y)*(C.y)+2*C.x*D.x)/(-2*C.y);
D.z=x*x-(D.x)*(D.x)-(D.y)*(D.y);
if (fabs(D.z)<1e-10)
D.z=0;
//if (check) //可构成三棱锥
if (D.z>-1e-10)
{
D.z=sqrt(D.z);
vect DE;
DE.x=E.x-D.x;
DE.y=E.y-D.y;
DE.z=E.z-D.z;
ha=count(D,A,DE);
hb=count(D,B,DE);
hc=count(D,C,DE);
}
else //不可构成三棱锥时,依照最短边求解
{
if (x<=y && x<=z)
s_count(x,y,z,A,B,C,D,E,ha,hb,hc);
else if (y<=x && y<=z)
s_count(y,x,z,B,A,C,D,E,hb,ha,hc);
else if (z<=x && z<=y)
s_count(z,y,x,C,B,A,D,E,hc,hb,ha);
}
ha*=-1;
hb*=-1;
hc*=-1;
printf("%.15lf %.15lf %.15lf\n",ha,hb,hc);
/*
printf("%lf %lf %lf\n",A.x,A.y,A.z);
printf("%lf %lf %lf\n",B.x,B.y,B.z);
printf("%lf %lf %lf\n",C.x,C.y,C.z);
printf("%lf %lf %lf\n",D.x,D.y,D.z);
printf("%lf %lf %lf\n",E.x,E.y,E.z);
*/
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0); cout.tie(0);
int t; cin >> t;
for (;t;t--)
solve();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3888kb
input:
2 1 1 1 1 1 1 2 3 3 1 1 1
output:
-0.816496580927726 -0.816496580927726 -0.816496580927726 -2.000000000000000 -2.866025403784439 -2.866025403784439
result:
ok 6 numbers
Test #2:
score: -100
Wrong Answer
time: 2ms
memory: 3960kb
input:
1000 21 2 14 12 13 4 29 19 13 15 10 17 29 24 15 29 24 23 29 17 30 18 9 25 27 24 30 16 4 15 28 13 17 12 21 16 16 22 10 22 15 8 15 23 24 23 27 13 26 3 27 15 16 17 5 8 20 17 6 12 24 14 13 15 19 13 27 22 18 18 23 30 22 18 14 11 29 28 7 13 22 22 17 11 19 9 16 22 20 17 21 14 20 6 29 25 20 10 19 9 27 27 17...
output:
-2.935856727586833 -2.000000000000000 -13.352348999857673 -22.146476218003027 -16.076204705476879 -12.241826659011300 -28.027431433359670 -18.318582636182793 -8.243362186282258 -27.266119651334364 -13.159319584325651 -26.882525397692710 -26.534933366925671 -22.066632132649342 -29.616079568529663 -26...
result:
wrong answer 61st numbers differ - expected: '-23.54911', found: '-29.76066', error = '0.26377'