QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#408483 | #5046. Moon | crimson231 | WA | 0ms | 27304kb | C++17 | 12.2kb | 2024-05-10 14:23:23 | 2024-05-10 14:23:24 |
Judging History
answer
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath>
#include <cstring>
#include <random>
#include <cassert>
#include <array>
#include <tuple>
typedef long long ll;
typedef long double ld;
//typedef double ld;
typedef std::pair<int, int> pi;
const ld INF = 1e17;
const ld TOL = 1e-15;
const int LEN = 1e6;
const ld PI = acos(-1);
int N, M, T, Q;
//geometry-struct
inline bool zero(const ld& x) { return std::abs(x) < TOL; }
inline int dcmp(const ld& x) { return std::abs(x) < TOL ? 0 : x > 0 ? 1 : -1; }
struct Pos3D {
ll x, y, z;
Pos3D(ll X = 0, ll Y = 0, ll Z = 0) : x(X), y(Y), z(Z) {}
bool operator == (const Pos3D& p) const { return x == p.x && y == p.y && z == p.z; }
bool operator != (const Pos3D& p) const { return x != p.x || y != p.y || z != p.z; }
bool operator < (const Pos3D& p) const { return x == p.x ? y == p.y ? z < p.z : y < p.y : x < p.x; }
inline ll operator * (const Pos3D& p) const { return x * p.x + y * p.y + z * p.z; }
inline Pos3D operator / (const Pos3D& p) const {
Pos3D ret;
ret.x = y * p.z - z * p.y;
ret.y = z * p.x - x * p.z;
ret.z = x * p.y - y * p.x;
return ret;
}
inline Pos3D operator + (const Pos3D& p) const { return { x + p.x, y + p.y, z + p.z }; }
inline Pos3D operator - (const Pos3D& p) const { return { x - p.x, y - p.y, z - p.z }; }
inline Pos3D operator * (const ll& scalar) const { return { x * scalar, y * scalar, z * scalar }; }
inline Pos3D operator / (const ll& scalar) const { return { x / scalar, y / scalar, z / scalar }; }
Pos3D& operator += (const Pos3D& p) { x += p.x; y += p.y; z += p.z; return *this; }
Pos3D& operator -= (const Pos3D& p) { x -= p.x; y -= p.y; z -= p.z; return *this; }
Pos3D& operator *= (const ll& scalar) { x *= scalar; y *= scalar; z *= scalar; return *this; }
Pos3D& operator /= (const ll& scalar) { x /= scalar; y /= scalar; z /= scalar; return *this; }
inline ll Euc() const { return x * x + y * y + z * z; }
ld mag() const { return sqrt(Euc()); }
friend std::istream& operator >> (std::istream& is, Pos3D& p) {
is >> p.x >> p.y >> p.z;
return is;
}
friend std::ostream& operator << (std::ostream& os, const Pos3D& p) {
os << p.x << " " << p.y << " " << p.z << "\n";
return os;
}
} candi[LEN];
struct Pos3Df {
ld x, y, z;
Pos3Df(ld X = 0, ld Y = 0, ld Z = 0) : x(X), y(Y), z(Z) {}
bool operator == (const Pos3Df& p) const { return x == p.x && y == p.y && z == p.z; }
bool operator != (const Pos3Df& p) const { return x != p.x || y != p.y || z != p.z; }
bool operator < (const Pos3Df& p) const { return x == p.x ? y == p.y ? z < p.z : y < p.y : x < p.x; }
inline ld operator * (const Pos3Df& p) const { return x * p.x + y * p.y + z * p.z; }
inline Pos3Df operator / (const Pos3Df& p) const {
Pos3Df ret;
ret.x = y * p.z - z * p.y;
ret.y = z * p.x - x * p.z;
ret.z = x * p.y - y * p.x;
return ret;
}
inline Pos3Df operator + (const Pos3Df& p) const { return { x + p.x, y + p.y, z + p.z }; }
inline Pos3Df operator - (const Pos3Df& p) const { return { x - p.x, y - p.y, z - p.z }; }
inline Pos3Df operator * (const ld& scalar) const { return { x * scalar, y * scalar, z * scalar }; }
inline Pos3Df operator / (const ld& scalar) const { return { x / scalar, y / scalar, z / scalar }; }
Pos3Df& operator += (const Pos3Df& p) { x += p.x; y += p.y; z += p.z; return *this; }
Pos3Df& operator -= (const Pos3Df& p) { x -= p.x; y -= p.y; z -= p.z; return *this; }
Pos3Df& operator *= (const ld& scalar) { x *= scalar; y *= scalar; z *= scalar; return *this; }
Pos3Df& operator /= (const ld& scalar) { x /= scalar; y /= scalar; z /= scalar; return *this; }
inline Pos3Df unit() const { return *this / mag(); }
inline Pos3Df norm(const Pos3Df& p) const { return (*this / p).unit(); }
ld Euc() const { return x * x + y * y + z * z; }
ld mag() const { return sqrtl(Euc()); }
friend std::istream& operator >> (std::istream& is, Pos3Df& p) {
is >> p.x >> p.y >> p.z;
return is;
}
friend std::ostream& operator << (std::ostream& os, const Pos3Df& p) {
os << p.x << " " << p.y << " " << p.z << "\n";
return os;
}
};
typedef std::vector<Pos3D> Polyhedron;
typedef std::vector<Pos3Df> Polyhedronf;
const Pos3D O3D = { 0, 0, 0 };
const Pos3Df O3Df = { 0, 0, 0 };
const Pos3D X_axis = { 1, 0, 0 };
const Pos3D Y_axis = { 0, 1, 0 };
const Pos3D Z_axis = { 0, 0, 1 };
//const Pos3D MAXP3D = { INF, INF, INF };
std::vector<Pos3D> C3D;//3D
std::vector<Pos3Df> C3Df;//3D double
//fn
inline Pos3D cross(const Pos3D& d1, const Pos3D& d2, const Pos3D& d3) { return (d2 - d1) / (d3 - d2); }
inline Pos3Df cross(const Pos3Df& d1, const Pos3Df& d2, const Pos3Df& d3) { return (d2 - d1) / (d3 - d2); }
inline ll dot(const Pos3D& d1, const Pos3D& d2, const Pos3D& d3) { return (d2 - d1) * (d3 - d2); }
inline bool collinear(const Pos3D& a, const Pos3D& b, const Pos3D& c) {
return !((b - a) / (c - b)).Euc();
}
inline bool coplanar(const Pos3D& a, const Pos3D& b, const Pos3D& c, const Pos3D& p) {
return !(cross(a, b, c) * (p - a));
}
inline bool above(const Pos3D& a, const Pos3D& b, const Pos3D& c, const Pos3D& p) {// is p strictly above plane
return cross(a, b, c) * (p - a) > 0;
}
inline int prep(std::vector<Pos3D>& p) {//refer to Koosaga'
shuffle(p.begin(), p.end(), std::mt19937(0x14004));
int dim = 1;
for (int i = 1; i < p.size(); i++) {
if (dim == 1) {
if (p[0] != p[i]) std::swap(p[1], p[i]), ++dim;
}
else if (dim == 2) {
if (!collinear(p[0], p[1], p[i]))
std::swap(p[2], p[i]), ++dim;
}
else if (dim == 3) {
if (!coplanar(p[0], p[1], p[2], p[i]))
std::swap(p[3], p[i]), ++dim;
}
}
//assert(dim == 4);
return dim;
}
struct Planar {
Pos3Df norm, p0;
//Planar(Pos3D NORM = Pos3D(0, 0, 0), Pos3D P0 = Pos3D(0, 0, 0)) : norm(NORM), p0(P0) {}
Planar(Pos3Df a = Pos3Df(0, 0, 0), Pos3Df b = Pos3Df(0, 0, 0), Pos3Df c = Pos3Df(0, 0, 0)) {
norm = cross(a, b, c).unit();
p0 = a;
}
inline bool coplanar(const Pos3Df p) const { return zero(norm * (p - p0)); }
friend std::istream& operator >> (std::istream& is, Planar& P) { is >> P.norm >> P.p0; return is; }
friend std::ostream& operator << (std::ostream& os, const Planar& P) { os << P.norm << " " << P.p0; return os; }
};
struct Face {
int v[3];
Face(int a = 0, int b = 0, int c = 0) { v[0] = a; v[1] = b; v[2] = c; }
inline Pos3D norm(std::vector<Pos3D>& C) const { return cross(C[v[0]], C[v[1]], C[v[2]]); }
Planar P(const Polyhedronf& C) const { return Planar(C[v[0]], C[v[1]], C[v[2]]); }
inline ld sph_tri_area(const Polyhedronf& C) const {
ld ret = -PI;
Planar s1 = Planar(C[v[0]], C[v[1]], O3Df);
Planar s2 = Planar(C[v[1]], C[v[2]], O3Df);
Planar s3 = Planar(C[v[2]], C[v[0]], O3Df);
ret += PI - atan2l((s1.norm / s2.norm).mag(), s1.norm * s2.norm);
ret += PI - atan2l((s2.norm / s3.norm).mag(), s2.norm * s3.norm);
ret += PI - atan2l((s3.norm / s1.norm).mag(), s3.norm * s1.norm);
return ret;
}
ll above(const Polyhedron& C, const Pos3D& p) const {
return cross(C[v[0]], C[v[1]], C[v[2]]) * (p - C[v[0]]);
}
};
bool strictly_inner_check(const std::vector<Pos3D>& C, const std::vector<Face>& F, const Pos3D& p) {
for (const Face& f : F) {
if (f.above(C, p) >= 0) return 0;
}
return 1;
}
std::vector<Face> Hull3D;
struct Edge {
int face_num, edge_num;
Edge(int t = 0, int v = 0) : face_num(t), edge_num(v) {}
};
bool col = 0, cop = 0;
std::vector<Face> convex_hull_3D(std::vector<Pos3D>& candi) {//incremental construction
// 3D Convex Hull in O(n log n)
// Very well tested. Good as long as not all points are coplanar
// In case of collinear faces, returns arbitrary triangulation
// Credit: Benq
// refer to Koosaga'
col = 0, cop = 0;
int suf = prep(candi);
if (suf <= 2) { col = 1; return {}; };
if (suf == 3) { cop = 1; return {}; };
int sz = candi.size();
std::vector<Face> faces;
std::vector<int> active;//whether face is active - face faces outside
std::vector<std::vector<int>> vis(sz);//faces visible from each point
std::vector<std::vector<int>> rvis;//points visible from each face
std::vector<std::array<Edge, 3>> other;//other face adjacent to each edge of face
auto ad = [&](const int& a, const int& b, const int& c) -> void {//add face
faces.push_back(Face(a, b, c));
active.push_back(1);
rvis.emplace_back();
other.emplace_back();
return;
};
auto visible = [&](const int& a, const int& b) -> void {
vis[b].push_back(a);
rvis[a].push_back(b);
return;
};
auto abv = [&](const int& a, const int& b) -> bool {//above
Face tri = faces[a];
return above(candi[tri.v[0]], candi[tri.v[1]], candi[tri.v[2]], candi[b]);
};
auto edge = [&](const Edge& e) -> pi {
return { faces[e.face_num].v[e.edge_num], faces[e.face_num].v[(e.edge_num + 1) % 3] };
};
auto glue = [&](const Edge& a, const Edge& b) -> void {//link two faces by an edge
pi x = edge(a); assert(edge(b) == pi(x.second, x.first));
other[a.face_num][a.edge_num] = b;
other[b.face_num][b.edge_num] = a;
return;
};//ensure face 0 is removed when i = 3
ad(0, 1, 2), ad(0, 2, 1);
if (abv(1, 3)) std::swap(candi[1], candi[2]);
for (int i = 0; i < 3; i++) glue({ 0, i }, { 1, 2 - i });
for (int i = 3; i < sz; i++) visible(abv(1, i), i);//coplanar points go in rvis[0]
std::vector<int> label(sz, -1);
for (int i = 3; i < sz; i++) {//incremental construction
std::vector<int> rem;
for (auto& v : vis[i]) if (active[v]) { active[v] = 0, rem.push_back(v); }
if (!rem.size()) continue;//hull unchanged
int st = -1;//start idx
for (const int& v : rem) {
for (int j = 0; j < 3; j++) {
int o = other[v][j].face_num;
if (active[o]) {//create new face!
int idx1, idx2;
std::tie(idx1, idx2) = edge({ v, j });
ad(idx1, idx2, i);
st = idx1;
int cur = rvis.size() - 1;
label[idx1] = cur;
std::vector<int> tmp;
set_union(rvis[v].begin(), rvis[v].end(), rvis[o].begin(), rvis[o].end(), back_inserter(tmp));
//merge sorted vectors ignoring duplicates
for (auto& x : tmp) if (abv(cur, x)) visible(cur, x);
//if no rounding errors then guaranteed that only x > i matters
glue({ cur, 0 }, other[v][j]);//glue old, new face
}
}
}
for (int x = st, y; ; x = y) {//glue new faces together
int X = label[x];
glue({ X, 1 }, { label[y = faces[X].v[1]], 2 });
if (y == st) break;
}
}
//for (const Face& F : faces) {
// std::cout << F.v[0] << " " << F.v[1] << " " << F.v[2] << " DEBUG\n";
//}
std::vector<Face> hull3D;
for (int i = 0; i < faces.size(); i++) if (active[i]) hull3D.push_back(faces[i]);
return hull3D;
}
void solve() {
std::cin.tie(0)->sync_with_stdio(0);
std::cout.tie(0);
std::cout << std::fixed;
std::cout.precision(17);
std::cin >> N;
C3D.resize(N);
C3Df.resize(N + 1);
for (int i = 0; i < N; i++) {
std::cin >> C3D[i];
}
C3D.push_back(Pos3D(0, 0, 0));
//int sz1 = C3D.size();
//std::sort(C3D.begin(), C3D.end());
////C3D.erase(unique(C3D.begin(), C3D.end()), C3D.end());
//int sz2 = C3D.size();
//assert(sz1 == sz2);
Hull3D = convex_hull_3D(C3D);
//for (Pos3D& p : C3D) std::cout << p << "\n";
if (col || cop) { std::cout << "1.0000000\n"; return; }
Pos3Df p;
for (int i = 0; i < N + 1; i++) {
p = Pos3Df(C3D[i].x, C3D[i].y, C3D[i].z);
ld x = p.mag();
if (p.mag() > x) p *= 1000, p /= x;
C3Df[i] = p;
}
ld suf = 0;
//std::cout << "DEBUG\n";
//std::cout << Hull3D.size() << "\n";
for (const Face& F : Hull3D) {
//std::cout << F.v[0] << " " << F.v[1] << " " << F.v[2] << "\n";
//std::cout << "a : " << C3Df[F.v[0]] << "\nb : " << C3Df[F.v[1]] << "\nc : " << C3Df[F.v[2]] << "\n";
//std::cout << F.P(C3Df) << "\n";
//std::cout << F.P(C3Df).coplanar(O3Df) << "\n";
if (!F.P(C3Df).coplanar(O3Df)) {
ld a = F.sph_tri_area(C3Df);
//std::cout << a << "\n";
suf += a;
}
}
//std::cout << suf << "\n" << 2 * PI << "\n";
if (strictly_inner_check(C3D, Hull3D, O3D)) std::cout << "0.0000000\n";
else std::cout << (1 - suf / (4 * PI)) << "\n";
return;
}
int main() { solve(); return 0; }//boj19508 Convex Hull - refer to koosaga, BIGINTEGER
/*
6
1000000 0 0
0 1000000 0
0 0 1000000
-1 0 0
0 -1 0
1000000 1000000 -1
4
462089 639500 880208
808679 230303 296682
-914229 -382082 -505721
1557 -68865 49217
0.0000000
*/
詳細信息
Test #1:
score: 100
Accepted
time: 0ms
memory: 27272kb
input:
3 1 0 0 0 1 0 0 0 1
output:
0.87500000000000001
result:
ok found '0.8750000', expected '0.8750000', error '0.0000000'
Test #2:
score: 0
Accepted
time: 0ms
memory: 27056kb
input:
8 5 -5 -5 -5 5 5 5 5 -5 -5 -5 5 -5 5 -5 5 -5 5 -5 -5 -5 5 5 5
output:
0.0000000
result:
ok found '0.0000000', expected '0.0000000', error '-0.0000000'
Test #3:
score: 0
Accepted
time: 0ms
memory: 26988kb
input:
3 -1 1 0 1 0 0 -1 -1 0
output:
1.0000000
result:
ok found '1.0000000', expected '1.0000000', error '0.0000000'
Test #4:
score: 0
Accepted
time: 0ms
memory: 27040kb
input:
3 1 0 0 -1 -1 0 -1 1 0
output:
1.0000000
result:
ok found '1.0000000', expected '1.0000000', error '0.0000000'
Test #5:
score: -100
Wrong Answer
time: 0ms
memory: 27304kb
input:
50 243766 -981749 -980016 -887005 -856294 -972813 393157 -975105 -847438 -939233 -893701 -913280 -873567 -744684 -879477 175298 -920817 -975741 -439988 -875937 -822164 -408160 -882975 -817414 -680579 -940571 -771153 12852 -941365 -945926 17235 -893328 -840088 -261754 -812552 -901703 207544 -941958 -...
output:
-nan
result:
wrong output format Expected double, but "-nan" found