QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#403364#2073. Knowledge-Oriented ProblemqwerasdfzxclTL 1ms3768kbC++2029.9kb2024-05-02 09:33:042024-05-02 09:33:05

Judging History

你现在查看的是最新测评结果

  • [2024-05-02 09:33:05]
  • 评测
  • 测评结果:TL
  • 用时:1ms
  • 内存:3768kb
  • [2024-05-02 09:33:04]
  • 提交

answer

#include <bits/stdc++.h>


#include <utility>

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


using namespace std;
using mint = atcoder::modint1000000007;
typedef long long ll;

template<class T>
struct matrix{
	int n, m;
	vector<vector<T>> data;
	vector<T> &operator[](int i){
		assert(0 <= i && i < n);
		return data[i];
	}
	const vector<T> &operator[](int i) const{
		assert(0 <= i && i < n);
		return data[i];
	}
	matrix &inplace_slice(int il, int ir, int jl, int jr){
		assert(0 <= il && il <= ir && ir <= n);
		assert(0 <= jl && jl <= jr && jr <= m);
		n = ir - il, m = jr - jl;
		if(il > 0) for(auto i = 0; i < n; ++ i) swap(data[i], data[il + i]);
		data.resize(n);
		for(auto &row: data){
			row.erase(row.begin(), row.begin() + jl);
			row.resize(m);
		}
		return *this;
	}
	matrix slice(int il, int ir, int jl, int jr) const{
		return matrix(*this).inplace_slice(il, ir, jl, jr);
	}
	matrix &inplace_row_slice(int il, int ir){
		assert(0 <= il && il <= ir && ir <= n);
		n = ir - il;
		if(il > 0) for(auto i = 0; i < n; ++ i) swap(data[i], data[il + i]);
		data.resize(n);
		return *this;
	}
	matrix row_slice(int il, int ir) const{
		return matrix(*this).inplace_row_slice(il, ir);
	}
	matrix &inplace_column_slice(int jl, int jr){
		assert(0 <= jl && jl <= jr && jr <= m);
		m = jr - jl;
		for(auto &row: data){
			row.erase(row.begin(), row.begin() + jl);
			row.resize(m);
		}
		return *this;
	}
	matrix column_slice(int jl, int jr) const{
		return matrix(*this).inplace_column_slice(jl, jr);
	}
	bool operator==(const matrix &a) const{
		assert(n == a.n && m == a.m);
		return data == a.data;
	}
	bool operator!=(const matrix &a) const{
		assert(n == a.n && m == a.m);
		return data != a.data;
	}
	matrix &operator+=(const matrix &a){
		assert(n == a.n && m == a.m);
		for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] += a[i][j];
		return *this;
	}
	matrix operator+(const matrix &a) const{
		return matrix(*this) += a;
	}
	matrix &operator-=(const matrix &a){
		assert(n == a.n && m == a.m);
		for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] -= a[i][j];
		return *this;
	}
	matrix operator-(const matrix &a) const{
		return matrix(*this) -= a;
	}
	matrix operator*=(const matrix &a){
		assert(m == a.n);
		int l = a.m;
		matrix res(n, l);
		for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) for(auto k = 0; k < l; ++ k) res[i][k] += data[i][j] * a[j][k];
		return *this = res;
	}
	matrix operator*(const matrix &a) const{
		return matrix(*this) *= a;
	}
	matrix &operator*=(T c){
		for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] *= c;
		return *this;
	}
	matrix operator*(T c) const{
		return matrix(*this) *= c;
	}
	template<class U, typename enable_if<is_integral<U>::value>::type* = nullptr>
	matrix &inplace_power(U e){
		assert(n == m && e >= 0);
		matrix res(n, n, T{1});
		for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this;
		return *this = res;
	}
	template<class U>
	matrix power(U e) const{
		return matrix(*this).inplace_power(e);
	}
	matrix &inplace_transpose(){
		assert(n == m);
		for(auto i = 0; i < n; ++ i) for(auto j = i + 1; j < n; ++ j) swap(data[i][j], data[j][i]);
		return *this;
	}
	matrix transpose() const{
		if(n == m) return matrix(*this).inplace_transpose();
		matrix res(m, n);
		for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) res[j][i] = data[i][j];
		return res;
	}
	vector<T> operator*(const vector<T> &v) const{
		assert(m == (int)v.size());
		vector<T> res(n, T{0});
		for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) res[i] += data[i][j] * v[j];
		return res;
	}
	// Assumes T is either a floating, integral, or a modular type.
	// If T is a floating type, O(up_to) divisions with O(n * m * up_to) additions, subtractions, and multiplications.
	// Otherwise, O(n * up_to * log(size)) divisions with O(n * m * up_to) additions, subtractions, and multiplications.
	// Returns {REF matrix, determinant, rank}
	tuple<matrix &, T, int> inplace_REF(int up_to = -1){
		if(n == 0) return {*this, T{1}, 0};
		if(!~up_to) up_to = m;
		T det = 1;
		int rank = 0;
		for(auto j = 0; j < up_to; ++ j){
			if constexpr(is_floating_point_v<T>){
				static const T eps = 1e-9;
				int pivot = rank;
				for(auto i = rank + 1; i < n; ++ i) if(abs(data[pivot][j]) < abs(data[i][j])) pivot = i;
				if(rank != pivot){
					swap(data[rank], data[pivot]);
					det *= -1;
				}
				if(abs(data[rank][j]) <= eps) continue;
				det *= data[rank][j];
				T inv = 1 / data[rank][j];
				for(auto i = rank + 1; i < n; ++ i) if(abs(data[i][j]) > eps){
					T coef = data[i][j] * inv;
					for(auto k = j; k < m; ++ k) data[i][k] -= coef * data[rank][k];
				}
				++ rank;
			}
			else{
				for(auto i = rank + 1; i < n; ++ i) while(data[i][j]!=0){
					T q;
					if constexpr(is_integral_v<T> || is_same_v<T, __int128_t> || is_same_v<T, __uint128_t>) q = data[rank][j] / data[i][j];
					else q = data[rank][j].val() / data[i][j].val();
					if(q!=0) for(auto k = j; k < m; ++ k) data[rank][k] -= q * data[i][k];
					swap(data[rank], data[i]);
					det *= -1;
				}
				if(rank == j) det *= data[rank][j];
				else det = T{0};
				if(data[rank][j]!=0) ++ rank;
			}
			if(rank == n) break;
		}
		return {*this, det, rank};
	}
	// Assumes T is either a floating, integral, or a modular type.
	// If T is a floating type, O(up_to) divisions with O(n * m * up_to) additions, subtractions, and multiplications.
	// Otherwise, O(n * up_to * log(size)) divisions with O(n * m * up_to) additions, subtractions, and multiplications.
	// Returns {REF matrix, determinant, rank}
	tuple<matrix, T, int> REF(int up_to = -1) const{
		return matrix(*this).inplace_REF(up_to);
	}
	// Assumes T is a field.
	// O(up_to) divisions with O(n * m * up_to) additions, subtractions, and multiplications.
	// Returns {REF matrix, determinant, rank}
	tuple<matrix &, T, int> inplace_REF_field(int up_to = -1){
		if(n == 0) return {*this, T{1}, 0};
		if(!~up_to) up_to = m;
		T det = T{1};
		int rank = 0;
		for(auto j = 0; j < up_to; ++ j){
			int pivot = -1;
			for(auto i = rank; i < n; ++ i) if(data[i][j] != T{0}){
				pivot = i;
				break;
			}
			if(!~pivot){
				det = T{0};
				continue;
			}
			if(rank != pivot){
				swap(data[rank], data[pivot]);
				det *= -1;
			}
			det *= data[rank][j];
			T inv = 1 / data[rank][j];
			for(auto i = rank + 1; i < n; ++ i) if(data[i][j] != T{0}){
				T coef = data[i][j] * inv;
				for(auto k = j; k < m; ++ k) data[i][k] -= coef * data[rank][k];
			}
			++ rank;
			if(rank == n) break;
		}
		return {*this, det, rank};
	}
	// Assumes T is a field.
	// O(up_to) divisions with O(n * m * up_to) additions, subtractions, and multiplications.
	// Returns {REF matrix, determinant, rank}
	tuple<matrix, T, int> REF_field(int up_to = -1) const{
		return matrix(*this).inplace_REF_field(up_to);
	}
	// Assumes T is a field.
	// O(n) divisions with O(n^3) additions, subtractions, and multiplications.
	optional<matrix> inverse() const{
		assert(n == m);
		if(n == 0) return *this;
		auto a = data;
		auto res = multiplicative_identity();
		for(auto j = 0; j < n; ++ j){
			int rank = j, pivot = -1;
			if constexpr(is_floating_point_v<T>){
				static const T eps = 1e-9;
				pivot = rank;
				for(auto i = rank + 1; i < n; ++ i) if(abs(a[pivot][j]) < abs(a[i][j])) pivot = i;
				if(abs(a[pivot][j]) <= eps) return {};
			}
			else{
				for(auto i = rank; i < n; ++ i) if(a[i][j] != T{0}){
					pivot = i;
					break;
				}
				if(!~pivot) return {};
			}
			swap(a[rank], a[pivot]), swap(res[rank], res[pivot]);
			T inv = 1 / a[rank][j];
			for(auto k = 0; k < n; ++ k) a[rank][k] *= inv, res[rank][k] *= inv;
			for(auto i = 0; i < n; ++ i){
				if constexpr(is_floating_point_v<T>){
					static const T eps = 1e-9;
					if(i != rank && abs(a[i][j]) > eps){
						T d = a[i][j];
						for(auto k = 0; k < n; ++ k) a[i][k] -= d * a[rank][k], res[i][k] -= d * res[rank][k];
					}
				}
				else if(i != rank && a[i][j] != T{0}){
					T d = a[i][j];
					for(auto k = 0; k < n; ++ k) a[i][k] -= d * a[rank][k], res[i][k] -= d * res[rank][k];
				}
			}
		}
		return res;
	}
	// Assumes T is either a floating, integral, or a modular type.
	// If T is a floating type, O(n) divisions with O(n^3) additions, subtractions, and multiplications.
	// Otherwise, O(n^2 * log(size)) divisions with O(n^3) additions, subtractions, and multiplications.
	T determinant() const{
		assert(n == m);
		return get<1>(REF());
	}
	// Assumes T is a field.
	// O(n) divisions with O(n^3) additions, subtractions, and multiplications.
	T determinant_field() const{
		assert(n == m);
		return get<1>(REF_field());
	}
	// Assumes T is either a floating, integral, or a modular type.
	// If T is a floating type, O(n) divisions with O(n^3) additions, subtractions, and multiplications.
	// Otherwise, O(n^2 * log(size)) divisions with O(n^3) additions, subtractions, and multiplications.
	int rank() const{
		return get<2>(REF());
	}
	// Assumes T is a field.
	// O(n) divisions with O(n^3) additions, subtractions, and multiplications.
	int rank_field() const{
		return get<2>(REF_field());
	}
	// Regarding the matrix as a system of linear equations by separating first m-1 columns, find a solution of the linear equation.
	// Assumes T is a field
	// O(n * m^2)
	optional<vector<T>> find_a_solution() const{
		assert(m >= 1);
		auto [ref, _, rank] = REF_field(m - 1);
		for(auto i = rank; i < n; ++ i) if(ref[i][m - 1] != T{0}) return {};
		vector<T> res(m - 1);
		for(auto i = rank - 1; i >= 0; -- i){
			int pivot = 0;
			while(pivot < m - 1 && ref[i][pivot] == T{0}) ++ pivot;
			assert(pivot < m - 1);
			res[pivot] = ref[i][m - 1];
			for(auto j = pivot + 1; j < m - 1; ++ j) res[pivot] -= ref[i][j] * res[j];
			res[pivot] /= ref[i][pivot];
		}
		return res;
	}
	// O(n * 2^n)
	T permanent() const{
		assert(n <= 30 && n == m);
		T perm = n ? 0 : 1;
		vector<T> sum(n);
		for(auto order = 1; order < 1 << n; ++ order){
			int j = __lg(order ^ order >> 1 ^ order - 1 ^ order - 1 >> 1), sign = (order ^ order >> 1) & 1 << j ? 1 : -1;
			T prod = order & 1 ? -1 : 1;
			if((order ^ order >> 1) & 1 << j) for(auto i = 0; i < n; ++ i) prod *= sum[i] += data[i][j];
			else for(auto i = 0; i < n; ++ i) prod *= sum[i] -= data[i][j];
			perm += prod;
		}
		return perm * (n & 1 ? -1 : 1);
	}
	template<class output_stream>
	friend output_stream &operator<<(output_stream &out, const matrix &a){
		out << "\n";
		for(auto i = 0; i < a.n; ++ i){
			for(auto j = 0; j < a.m; ++ j) out << a[i][j].val() << " ";
			out << "\n";
		}
		return out;
	}
	matrix(){}
	matrix(int n, int m, T init_diagonal = T{0}, T init_off_diagonal = T{0}): n(n), m(m){
		assert(n >= 0 && m >= 0);
		data.assign(n, vector<T>(m, T{0}));
		for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] = i == j ? init_diagonal : init_off_diagonal;
	}
	matrix(int n, int m, const vector<vector<T>> &a): n(n), m(m), data(a){ }
	static matrix additive_identity(int n, int m){
		return matrix(n, m, T{0}, T{0});
	}
	static matrix multiplicative_identity(int n, int m){
		return matrix(n, m, T{1}, T{0});
	}
};
template<class T>
matrix<T> operator*(T c, matrix<T> a){
	for(auto i = 0; i < a.n; ++ i) for(auto j = 0; j < a.m; ++ j) a[i][j] = c * a[i][j];
	return a;
}
// Multiply a row vector v on the left
template<class T>
vector<T> operator*(const vector<T> &v, const matrix<T> &a){
	assert(a.n == (int)size(v));
	vector<T> res(a.m, T{0});
	for(auto i = 0; i < a.n; ++ i) for(auto j = 0; j < a.m; ++ j) res[j] += v[i] * a[i][j];
	return res;
}

mint calc(vector<vector<mint>> &G, int t){
	int n = G.size();
	vector<vector<mint>> fuck(n*t, vector<mint>(n*t, 0));

	for (int z=0;z<t;z++){
		for (int i=0;i<n;i++){
			for (int j=0;j<n;j++){
				fuck[z*n + i][z*n + j] = G[i][j];
			}
		}

		for (int i=0;i<n;i++) if (z<t-1) fuck[z*n+i][(z+1)*n+i] = -1;
		for (int i=0;i<n;i++) if (z<t-1) fuck[(z+1)*n+i][z*n+i] = -1;
	}

	fuck.pop_back();
	for (auto &x:fuck) x.pop_back();

	// cout << matrix<mint>(n*t-1, n*t-1, fuck);

	return matrix<mint>(n*t-1, n*t-1, fuck).determinant();

}

struct MM{
	matrix<mint> d[2][2];

	MM(const matrix<mint> &F, const matrix<mint> &G, const matrix<mint> &H, const matrix<mint> &I){
		d[0][0] = F;
		d[0][1] = G;
		d[1][0] = H;
		d[1][1] = I;
	}

	MM operator * (const MM &M) const{
		return MM(d[0][0]*M.d[0][0]+d[0][1]*M.d[1][0], d[0][0]*M.d[0][1]+d[0][1]*M.d[1][1], d[1][0]*M.d[0][0]+d[1][1]*M.d[1][0], d[1][0]*M.d[0][1]+d[1][1]*M.d[1][1]);
	}
};

MM pw(const MM &M, ll t){
	int n = M.d[0][0].n;
	if (!t) return MM(matrix<mint>(n, n, 1), matrix<mint>(n, n), matrix<mint>(n, n), matrix<mint>(n, n, 1));
	auto ret = pw(M, t/2);
	if (t&1) return ret * ret * M;
	return ret * ret;
}

void fuuck(vector<matrix<mint>> &F, ll &t){
	auto M = MM(F[1], matrix<mint>(F[1].n, F[1].n)-F[0], F[0], matrix<mint>(F[1].n, F[1].n));
	auto N = pw(M, t-4);

	F[4] = N.d[0][0] * F[1] + N.d[0][1] * F[0];
	F[3] = N.d[1][0] * F[1] + N.d[1][1] * F[0];
	F[5] = F[4]*F[1] - F[3];

	t = 7;
}

mint guess(vector<vector<mint>> G, ll t){
	int n = G.size();
	vector<matrix<mint>> F(min(6LL, t+1), matrix<mint>(n, n));
	F[0] = matrix<mint>(n, n, mint(1));
	F[1] = matrix<mint>(n, n, G);

	// cout << F[0];
	

	if (t <= 5) for (int i=2;i<=t;i++) F[i] = F[i-1]*F[1] - F[i-2];
	else fuuck(F, t);

	// cout << F[t-2] << F[t-3] << F[t-4];

	// return F[t].determinant();

	for (auto &x:G) x.back() = 0;
	for (auto &x:G.back()) x = 0;
	G.back().back() = 1;
	auto G2 = matrix<mint>(n, n, G);
	auto I2 = matrix<mint>(n, n, mint(1));
	I2[n-1][n-1] = 0;

	// cout << "ok " << t << '\n';
	// cout << F[t-1].n << F[t-1].m << G2.n << G2.m << F[t-2].n << F[t-2].m << I2.n << I2.m << '\n';

	if (t==1) return G2.determinant();
	if (t==2) return (F[t-1]*G2 - F[t-2]*I2).determinant();

	auto FUCK = F[1];
	for (int i=0;i<n;i++) FUCK[i][i] -= 1;
	auto H1 = F[t-2]*FUCK - F[t-3];
	auto H2 = F[t-3]*FUCK;
	if (t>3) H2 -= F[t-4];

	auto FUCK2 = FUCK;
	for (int i=0;i<n;i++) FUCK2[i][n-1] = 0;
	for (int j=0;j<n;j++) FUCK2[n-1][j] = 0;
	FUCK2[n-1][n-1] = 1;
	// cout << FUCK2 << "Hello\n";
	// cout << FUCK2[n-1][n-1].val() << '\n';
	return (H1*FUCK - H2*I2).determinant();
}

int main(){
	int n, m;
	ll t;
	scanf("%d %d %lld", &n, &m, &t);

	if (n==1){
		printf("1\n");
		return 0;
	}

	vector<vector<mint>> G(n, vector<mint>(n));
	for (int i=1;i<=m;i++){
		int x, y;
		scanf("%d %d", &x, &y);
		--x, --y;
		G[x][y] -= 1;
		G[y][x] -= 1;
		G[x][x] += 1;
		G[y][y] += 1;
	}

	for (int i=0;i<n;i++){
		if (t==2) G[i][i] += 1;
		else if (t>2) G[i][i] += 2;
	} 

	cout << guess(G, t).val() << '\n';

}

详细

Test #1:

score: 100
Accepted
time: 1ms
memory: 3768kb

input:

5 6 2
3 2
5 1
3 4
2 4
5 3
1 3

output:

4725

result:

ok single line: '4725'

Test #2:

score: 0
Accepted
time: 0ms
memory: 3632kb

input:

2 1 200
1 2

output:

272581704

result:

ok single line: '272581704'

Test #3:

score: 0
Accepted
time: 1ms
memory: 3704kb

input:

5 10 1000000000000000000
1 2
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5

output:

569698435

result:

ok single line: '569698435'

Test #4:

score: -100
Time Limit Exceeded

input:

500 62366 1000000000000000000
1 4
1 7
1 8
1 11
1 13
1 15
1 18
1 20
1 21
1 22
1 23
1 24
1 28
1 29
1 30
1 32
1 33
1 34
1 36
1 37
1 40
1 41
1 43
1 44
1 45
1 46
1 50
1 51
1 52
1 53
1 55
1 57
1 59
1 61
1 63
1 64
1 65
1 66
1 67
1 68
1 69
1 70
1 71
1 72
1 73
1 75
1 76
1 80
1 81
1 83
1 84
1 85
1 87
1 88
1 9...

output:


result: