QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#401126#7622. Yet Another CoffeeKongShuiLinHuaWA 18ms12164kbPython34.8kb2024-04-28 00:05:172024-04-28 00:05:18

Judging History

你现在查看的是最新测评结果

  • [2024-04-28 00:05:18]
  • 评测
  • 测评结果:WA
  • 用时:18ms
  • 内存:12164kb
  • [2024-04-28 00:05:17]
  • 提交

answer

import sys
import os

# import time
from bisect import bisect_left, bisect_right
# import functools
from math import ceil, floor, gcd, factorial, sqrt, log2, log
import random
# import re
from collections import Counter, defaultdict, deque
# from copy import deepcopy
from functools import cmp_to_key, lru_cache, reduce
from heapq import heapify, heappop, heappush, heappushpop, nlargest, nsmallest
from itertools import accumulate, combinations, permutations
from operator import add, iand, ior, itemgetter, mul, xor
from string import ascii_lowercase, ascii_uppercase
from typing import *

input = lambda: sys.stdin.readline().rstrip("\r\n")

# --------------------
# 手写栈模板
# 克服py栈太浅的问题
from types import GeneratorType


def bootstrap(f, stack=[]):
    def wrappedfunc(*args, **kwargs):
        if stack:
            return f(*args, **kwargs)
        else:
            to = f(*args, **kwargs)
            while True:
                if type(to) is GeneratorType:
                    stack.append(to)
                    to = next(to)
                else:
                    stack.pop()
                    if not stack:
                        break
                    to = stack[-1].send(to)
            return to

    return wrappedfunc
# --------------------


def I():
    return input()


def II():
    return int(input())


def MII():
    return map(int, input().split())


def LI():
    return list(input().split())


def LII():
    return list(map(int, input().split()))


def GMI():
    return map(lambda x: int(x) - 1, input().split())


def LGMI():
    return list(map(lambda x: int(x) - 1, input().split()))


def isPrimeMR(n):
    if n <= 1:
        return 0
    if n == 2 or n == 7 or n == 61:
        return 1
    d = n - 1
    d = d // (d & -d)
    L = [2, 7, 61] if n < 1 << 32 else [2, 3, 5, 7, 11, 13, 17] if n < 1 << 48 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
                                                                                     31, 37]
    for a in L:
        t = d
        y = pow(a, t, n)
        if y == 1: continue
        while y != n - 1:
            y = y * y % n
            if y == 1 or t == n - 1: return 0
            t <<= 1
    return 1

def findFactorRho(n):
    m = 1 << n.bit_length() // 8
    for c in range(1, 99):
        f = lambda x: (x * x + c) % n
        y, r, q, g = 2, 1, 1, 1
        while g == 1:
            x = y
            for i in range(r):
                y = f(y)
            k = 0
            while k < r and g == 1:
                ys = y
                for i in range(min(m, r - k)):
                    y = f(y)
                    q = q * abs(x - y) % n
                g = gcd(q, n)
                k += m
            r <<= 1
        if g == n:
            g = 1
            while g == 1:
                ys = f(ys)
                g = gcd(abs(x - ys), n)
        if g < n:
            if isPrimeMR(g):
                return g
            elif isPrimeMR(n // g):
                return n // g
            return findFactorRho(g)
        
def primeFactor(n):
    i = 2
    ret = {}
    rhoFlg = 0
    while i * i <= n:
        k = 0
        while n % i == 0:
            n //= i
            k += 1
        if k: ret[i] = k
        i += i % 2 + (3 if i % 3 == 1 else 1)
        if i == 101 and n >= 2 ** 20:
            while n > 1:
                if isPrimeMR(n):
                    ret[n], n = 1, 1
                else:
                    rhoFlg = 1
                    j = findFactorRho(n)
                    k = 0
                    while n % j == 0:
                        n //= j
                        k += 1
                    ret[j] = k
    if n > 1: ret[n] = 1
    if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
    return ret

def divisors(N):
    pf = primeFactor(N)
    ret = [1]
    for p in pf:
        ret_prev = ret
        ret = []
        for i in range(pf[p] + 1):
            for r in ret_prev:
                ret.append(r * (p ** i))
    return sorted(ret)


# sys.setrecursionlimit(int(1e5 + 10))根据需要调整递归深度
dx, dy = [0, 1, 0, -1, 1, -1, 1, -1], [1, 0, -1, 0, -1, -1, 1, 1]
inf = float('inf')
# RANDOM = random.randint(int(1e9 + 7), int(2e9 + 7)) # 防止卡哈希
mod = int(1e9 + 7)
# mod = 998244353

def solve():
    n, m = MII()
    a = [0] + LII()
    b = [LII() for _ in range(m)]
    b = sorted([[0, 0]] + b)
    mn = [0] * (n + 1)
    pos = 1
    for i in range(1, m + 1):
        while pos < b[i][0]:
            pos += 1
            mn[pos] = mn[pos] if a[mn[pos]] < a[mn[pos - 1]] else mn[pos - 1]
        a[mn[pos]] -= b[i][1]
    print(*list(accumulate(sorted(a)))[1:])
    return
t = II()
for _ in range(t):
    solve()

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 0
Wrong Answer
time: 18ms
memory: 12164kb

input:

5
10 14
17 37 59 65 53 73 68 177 160 111
10 177
5 193
2 30
3 63
2 339
3 263
5 178
2 190
9 23
10 328
10 200
9 8
3 391
6 230
12 9
152 306 86 88 324 59 18 14 42 260 304 55
3 50
2 170
1 252
7 811
1 713
7 215
10 201
4 926
8 319
19 20
182 74 180 201 326 243 195 31 170 263 284 233 48 166 272 281 179 116 31...

output:

-2596 -2559 -2506 -2447 -2382 -2314 -2241 -2130 -1970 -1793
-3643 -3625 -3583 -3528 -3469 -3383 -3295 -3143 -2883 -2579 -2273 -1949
-6678 -6630 -6556 -6440 -6274 -6104 -5925 -5745 -5563 -5368 -5167 -4934 -4691 -4428 -4156 -3875 -3591 -3272 -2946
-3418 -3003 -2572 -2140 -1707 -1238 -768 -274 243 1046...

result:

wrong answer 11th numbers differ - expected: '-3505', found: '-3643'