QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#397305#3740. 2018SamponYWAC ✓16ms4784kbC++141.4kb2024-04-23 21:49:532024-04-23 21:49:55

Judging History

This is the latest submission verdict.

  • [2024-04-23 21:49:55]
  • Judged
  • Verdict: AC
  • Time: 16ms
  • Memory: 4784kb
  • [2024-04-23 21:49:53]
  • Submitted

answer

#include <bits/stdc++.h>
#define db double
#define il inline
#define re register
#define ll long long
#define ui unsigned
#define ull ui ll
#define i128 __int128
#define pii pair<int, int>
#define fi first
#define se second
#define eb emplace_back
#define SZ(v) (int)v.size()
#define ALL(v) v.begin(), v.end()
#define mems(v, x) memset(v, x, sizeof(v))
#define memc(a, b) memcpy(a, b, sizeof(a))
#define FOR(i, L, R) for(re int i = (L); i <= (R); ++i)
#define ROF(i, R, L) for(re int i = (R); i >= (L); --i)
#define LS i << 1, l, mid
#define RS i << 1 | 1, mid + 1, r
#define popc(x) __builtin_popcount(x)
using namespace std;
#define N 100005
#define P 1000000007
il int add(int x, int y) {return x + y < P ? x + y : x + y - P;}
il void addr(int &x, int y) {(x += y) >= P && (x -= P);}
il int qpow(int p, int n = P - 2) {
  int s = 1;
  while(n) {
    if(n & 1) s = 1ll * s * p % P;
    p = 1ll * p * p % P, n >>= 1;
  }
  return s;
}
int n, m;
int fac[N], ifac[N];
il int C(int n, int m) {return 1ll * fac[n] * ifac[m] % P * ifac[n - m] % P;}
int main() {
  ios::sync_with_stdio(0);
  cin.tie(0), cout.tie(0);
  fac[0] = 1; FOR(i, 1, N - 5) fac[i] = 1ll * fac[i - 1] * i % P;
  ifac[N - 5] = qpow(fac[N - 5]); ROF(i, N - 6, 0) ifac[i] = 1ll * ifac[i + 1] * (i + 1) % P;
  while(cin >> n >> m) cout << qpow(C((m + (n + 1)) - 1, (n + 1) - 1) - 1, 2) << "\n";
  cerr << 1.0 * clock() / CLOCKS_PER_SEC;
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 16ms
memory: 4784kb

input:

1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
1 11
1 12
1 13
1 14
1 15
1 16
1 17
1 18
1 19
1 20
1 21
1 22
1 23
1 24
1 25
1 26
1 27
1 28
1 29
1 30
1 31
1 32
1 33
1 34
1 35
1 36
1 37
1 38
1 39
1 40
1 41
1 42
1 43
1 44
1 45
1 46
1 47
1 48
1 49
1 50
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
2 11
2 12
2 13
2 1...

output:

1
4
9
16
25
36
49
64
81
100
121
144
169
196
225
256
289
324
361
400
441
484
529
576
625
676
729
784
841
900
961
1024
1089
1156
1225
1296
1369
1444
1521
1600
1681
1764
1849
1936
2025
2116
2209
2304
2401
2500
4
25
81
196
400
729
1225
1936
2916
4225
5929
8100
10816
14161
18225
23104
28900
35721
43681
5...

result:

ok 100000 numbers