QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#397305 | #3740. 2018 | SamponYW | AC ✓ | 16ms | 4784kb | C++14 | 1.4kb | 2024-04-23 21:49:53 | 2024-04-23 21:49:55 |
Judging History
answer
#include <bits/stdc++.h>
#define db double
#define il inline
#define re register
#define ll long long
#define ui unsigned
#define ull ui ll
#define i128 __int128
#define pii pair<int, int>
#define fi first
#define se second
#define eb emplace_back
#define SZ(v) (int)v.size()
#define ALL(v) v.begin(), v.end()
#define mems(v, x) memset(v, x, sizeof(v))
#define memc(a, b) memcpy(a, b, sizeof(a))
#define FOR(i, L, R) for(re int i = (L); i <= (R); ++i)
#define ROF(i, R, L) for(re int i = (R); i >= (L); --i)
#define LS i << 1, l, mid
#define RS i << 1 | 1, mid + 1, r
#define popc(x) __builtin_popcount(x)
using namespace std;
#define N 100005
#define P 1000000007
il int add(int x, int y) {return x + y < P ? x + y : x + y - P;}
il void addr(int &x, int y) {(x += y) >= P && (x -= P);}
il int qpow(int p, int n = P - 2) {
int s = 1;
while(n) {
if(n & 1) s = 1ll * s * p % P;
p = 1ll * p * p % P, n >>= 1;
}
return s;
}
int n, m;
int fac[N], ifac[N];
il int C(int n, int m) {return 1ll * fac[n] * ifac[m] % P * ifac[n - m] % P;}
int main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
fac[0] = 1; FOR(i, 1, N - 5) fac[i] = 1ll * fac[i - 1] * i % P;
ifac[N - 5] = qpow(fac[N - 5]); ROF(i, N - 6, 0) ifac[i] = 1ll * ifac[i + 1] * (i + 1) % P;
while(cin >> n >> m) cout << qpow(C((m + (n + 1)) - 1, (n + 1) - 1) - 1, 2) << "\n";
cerr << 1.0 * clock() / CLOCKS_PER_SEC;
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 16ms
memory: 4784kb
input:
1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 1...
output:
1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729 784 841 900 961 1024 1089 1156 1225 1296 1369 1444 1521 1600 1681 1764 1849 1936 2025 2116 2209 2304 2401 2500 4 25 81 196 400 729 1225 1936 2916 4225 5929 8100 10816 14161 18225 23104 28900 35721 43681 5...
result:
ok 100000 numbers