QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#39645#1875. NeingAC ✓187ms11584kbC++2015.7kb2022-07-12 17:20:582022-07-12 17:21:00

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2022-07-12 17:21:00]
  • 评测
  • 测评结果:AC
  • 用时:187ms
  • 内存:11584kb
  • [2022-07-12 17:20:58]
  • 提交

answer

/**
 *    author:  gary
 *    created: 11.07.2022 21:30:55
**/
#include<bits/stdc++.h>
#define rb(a,b,c) for(int a=b;a<=c;++a)
#define rl(a,b,c) for(int a=b;a>=c;--a)
#define rep(a,b) for(int a=0;a<b;++a)
#define LL long long
#define II(a,b) make_pair(a,b)
#define SRAND mt19937 rng(chrono::steady_clock::now().time_since_epoch().count())
#define random(a) rng()%a
#define ALL(a) a.begin(),a.end()
#define check_min(a,b) a=min(a,b)
#define check_max(a,b) a=max(a,b)
using namespace std;

//ctto
typedef long long ll;
typedef long double ld;
typedef complex<ld> pt;
const ld PI = acos(-1.L);

template<class T> struct cplx {
  T x, y;
  cplx() {
    x = 0.0;
    y = 0.0;
  }
  cplx(T nx, T ny = 0) {
    x = nx;
    y = ny;
  }
  cplx operator+(const cplx &c) const {
    return {x + c.x, y + c.y};
  }
  cplx operator-(const cplx &c) const {
    return {x - c.x, y - c.y};
  }
  cplx operator*(const cplx &c) const {
    return {x*c.x - y * c.y, x*c.y + y * c.x};
  }
  cplx& operator*=(const cplx &c) {
    return *this = {x*c.x - y * c.y, x*c.y + y * c.x};
  }
  inline T real() const {
    return x;
  }
  inline T imag() const {
    return y;
  }
  // Only supports right scalar multiplication like p*c
  template<class U> cplx operator*(const U &c) const {
    return {x * c, y * c};
  }
  template<class U> cplx operator/(const U &c) const {
    return {x / c, y / c};
  }
  template<class U> void operator/=(const U &c) {
    x /= c;
    y /= c;
  }
};
#define polar(r,a)  (cplx<ld>){r*cos(a),r*sin(a)}

const int DIG = 9, FDIG = 4;
const int BASE = 1e9, FBASE = 1e4;
typedef cplx<ld> Cplx;

// use mulmod when taking mod by int v and v>2e9
// you can use mod by bigint in that case too
struct BigInt {
  int sgn;
  vector<int> a;
  BigInt() : sgn(1) {}
  BigInt(ll v) {
    *this = v;
  }
  BigInt& operator = (ll v) {
    sgn = 1;
    if (v < 0) sgn = -1, v = -v;
    a.clear();
    for (; v > 0; v /= BASE) a.push_back(v % BASE);
    return *this;
  }
  BigInt(const BigInt& other) {
    sgn = other.sgn;
    a = other.a;
  }
  friend void swap(BigInt& a, BigInt& b) {
    swap(a.sgn, b.sgn);
    swap(a.a, b.a);
  }
  BigInt& operator = (BigInt other) {
    swap(*this, other);
    return *this;
  }
  BigInt(BigInt&& other) : BigInt() {
    swap(*this, other);
  }
  BigInt(const string& s) {
    read(s);
  }
  void read(const string& s) {
    sgn = 1;
    a.clear();
    int k = 0;
    for (; k < s.size() && (s[k] == '-' || s[k] == '+'); k++)
      if (s[k] == '-') sgn = -sgn;
    for (int i = s.size() - 1; i >= k; i -= DIG) {
      int x = 0;
      for (int j = max(k, i - DIG + 1); j <= i; j++) x = x * 10 + s[j] - '0';
      a.push_back(x);
    }
    trim();
  }
  friend istream& operator>>(istream &in, BigInt &v) {
    string s;
    in >> s;
    v.read(s);
    return in;
  }
  friend ostream& operator<<(ostream &out, const BigInt &v) {
    if (v.sgn == -1 && !v.zero()) out << '-';
    out << (v.a.empty() ? 0 : v.a.back());
    for (int i = (int) v.a.size() - 2; i >= 0; --i)
      out << setw(DIG) << setfill('0') << v.a[i];
    return out;
  }
  bool operator<(const BigInt &v) const {
    if (sgn != v.sgn) return sgn < v.sgn;
    if (a.size() != v.a.size()) return a.size() * sgn < v.a.size() * v.sgn;
    for (int i = (int)a.size() - 1; i >= 0; i--)
      if (a[i] != v.a[i]) return a[i] * sgn < v.a[i] * sgn;
    return 0;
  }
  bool operator>(const BigInt &v) const {
    return v < *this;
  }
  bool operator<=(const BigInt &v) const {
    return !(v < *this);
  }
  bool operator>=(const BigInt &v) const {
    return !(*this < v);
  }
  bool operator==(const BigInt &v) const {
    return !(*this < v) && !(v < *this);
  }
  bool operator!=(const BigInt &v) const {
    return *this < v || v < *this;
  }
  friend int __cmp(const BigInt& x, const BigInt& y) {
    if (x.a.size() != y.a.size()) return x.a.size() < y.a.size() ? -1 : 1;
    for (int i = (int) x.a.size() - 1; i >= 0; --i) if (x.a[i] != y.a[i])
        return x.a[i] < y.a[i] ? -1 : 1;
    return 0;
  }

  BigInt operator-() const {
    BigInt res = *this;
    if (zero()) return res;
    res.sgn = -sgn;
    return res;
  }

  void __add(const BigInt& v) {
    if (a.size() < v.a.size()) a.resize(v.a.size(), 0);
    for (int i = 0, carry = 0; i < max(a.size(), v.a.size()) || carry; ++i) {
      if (i == a.size()) a.push_back(0);
      a[i] += carry + (i < (int) v.a.size() ? v.a[i] : 0);
      carry = a[i] >= BASE;
      if (carry) a[i] -= BASE;
    }
  }

  void __sub(const BigInt& v) {
    for (int i = 0, carry = 0; i < (int) v.a.size() || carry; ++i) {
      a[i] -= carry + (i < (int) v.a.size() ? v.a[i] : 0);
      carry = a[i] < 0;
      if (carry) a[i] += BASE;
    }
    this->trim();
  }

  BigInt operator+=(const BigInt& v) {
    if (sgn == v.sgn) __add(v);
    else if (__cmp(*this, v) >= 0) __sub(v);
    else {
      BigInt vv = v;
      swap(*this, vv);
      __sub(vv);
    }
    return *this;
  }

  BigInt operator-=(const BigInt& v) {
    if (sgn == v.sgn) {
      if (__cmp(*this, v) >= 0) __sub(v);
      else {
        BigInt vv = v;
        swap(*this, vv);
        __sub(vv);
        sgn = -sgn;
      }
    } else __add(v);
    return *this;
  }

  template< typename L, typename R >
  typename enable_if <
  is_convertible<L, BigInt>::value &&
  is_convertible<R, BigInt>::value &&
  is_lvalue_reference < R&& >::value,
  BigInt >::type friend operator + (L&& l, R&& r) {
    BigInt result(forward<L>(l));
    result += r;
    return result;
  }
  template< typename L, typename R >
  typename enable_if <
  is_convertible<L, BigInt>::value &&
  is_convertible<R, BigInt>::value &&
  is_rvalue_reference < R&& >::value,
  BigInt >::type friend operator + (L&& l, R&& r) {
    BigInt result(move(r));
    result += l;
    return result;
  }
  template< typename L, typename R >
  typename enable_if <
  is_convertible<L, BigInt>::value &&
  is_convertible<R, BigInt>::value,
  BigInt >::type friend operator - (L&& l, R&& r) {
    BigInt result(forward<L>(l));
    result -= r;
    return result;
  }

  friend pair<BigInt, BigInt> divmod(const BigInt& a1, const BigInt& b1) {
    ll norm = BASE / (b1.a.back() + 1);
    BigInt a = a1.abs() * norm, b = b1.abs() * norm, q = 0, r = 0;
    q.a.resize(a.a.size());
    for (int i = a.a.size() - 1; i >= 0; i--) {
      r *= BASE;
      r += a.a[i];
      ll s1 = r.a.size() <= b.a.size() ? 0 : r.a[b.a.size()];
      ll s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[b.a.size() - 1];
      ll d = ((ll) BASE * s1 + s2) / b.a.back();
      r -= b * d;
      while (r < 0) r += b, --d;
      q.a[i] = d;
    }
    q.sgn = a1.sgn * b1.sgn;
    r.sgn = a1.sgn;
    q.trim();
    r.trim();
    auto res = make_pair(q, r / norm);
    if (res.second < 0) res.second += b1;
    return res;
  }
  BigInt operator/(const BigInt &v) const {
    return divmod(*this, v).first;
  }
  BigInt operator%(const BigInt &v) const {
    return divmod(*this, v).second;
  }
  void operator/=(int v) {
    if (llabs(v) >= BASE) {
      *this /= BigInt(v);
      return;
    }
    if (v < 0) sgn = -sgn, v = -v;
    for (int i = (int) a.size() - 1, rem = 0; i >= 0; --i) {
      ll cur = a[i] + rem * (ll)BASE;
      a[i] = (int) (cur / v);
      rem = (int) (cur % v);
    }
    trim();
  }
  BigInt operator/(int v) const {
    if (llabs(v) >= BASE) return *this / BigInt(v);
    BigInt res = *this;
    res /= v;
    return res;
  }
  void operator/=(const BigInt &v) {
    *this = *this / v;
  }
  ll operator%(ll v) const {
    int m = 0;
    for (int i = a.size() - 1; i >= 0; --i) m = (a[i] + m * (ll) BASE) % v;
    return m * sgn;
  }
  void operator*=(int v) {
    if (llabs(v) >= BASE) {
      *this *= BigInt(v);
      return;
    }
    if (v < 0) sgn = -sgn, v = -v;
    for (int i = 0, carry = 0; i < a.size() || carry; ++i) {
      if (i == a.size()) a.push_back(0);
      ll cur = a[i] * (ll) v + carry;
      carry = (int) (cur / BASE);
      a[i] = (int) (cur % BASE);
    }
    trim();
  }
  BigInt operator*(int v) const {
    if (llabs(v) >= BASE) return *this * BigInt(v);
    BigInt res = *this;
    res *= v;
    return res;
  }

  static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
    vector<ll> p(max(old_digits, new_digits) + 1);
    p[0] = 1;
    for (int i = 1; i < (int) p.size(); i++)
      p[i] = p[i - 1] * 10;
    vector<int> res;
    ll cur = 0;
    int cur_digits = 0;
    for (int i = 0; i < (int) a.size(); i++) {
      cur += a[i] * p[cur_digits];
      cur_digits += old_digits;
      while (cur_digits >= new_digits) {
        res.push_back((ll)(cur % p[new_digits]));
        cur /= p[new_digits];
        cur_digits -= new_digits;
      }
    }
    res.push_back((int) cur);
    while (!res.empty() && !res.back())
      res.pop_back();
    return res;
  }

  void fft(vector<Cplx>& a, bool invert) const {
    int n = a.size();
    for (int i = 1, j = 0; i < n; ++i) {
      int bit = n / 2;
      for (; j >= bit; bit /= 2) j -= bit;
      j += bit;
      if (i < j) swap(a[i], a[j]);
    }
    for (int len = 2; len <= n; len *= 2) {
      ld ang = 2 * PI / len * (invert ? -1 : 1);
      Cplx wlen = polar(1, ang);
      for (int i = 0; i < n; i += len) {
        Cplx w(1);
        for (int j = 0; j < len / 2; ++j) {
          Cplx u = a[i + j], v = a[i + j + len / 2] * w;
          a[i + j] = u + v;
          a[i + j + len / 2] = u - v;
          w *= wlen;
        }
      }
    }
    if (invert) for (int i = 0; i < n; ++i) a[i] /= n;
  }
  void multiply_fft(const vector<int> &a, const vector<int> &b, vector<int> &res) const {
    vector<Cplx> fa(a.begin(), a.end()), fb(b.begin(), b.end());
    int n = 1;
    while (n < max(a.size(), b.size())) n *= 2;
    n *= 2;
    fa.resize(n);
    fb.resize(n);
    fft(fa, 0);
    fft(fb, 0);
    for (int i = 0; i < n; ++i) fa[i] *= fb[i];
    fft(fa, 1);
    res.resize(n);
    ll carry = 0;
    for (int i = 0; i < n; i++) {
      ll t = (ll)(fa[i].real() + 0.5) + carry;
      carry = t / FBASE;
      res[i] = t % FBASE;
    }
  }
  static inline int rev_incr(int a, int n) {
    int msk = n / 2, cnt = 0;
    while ( a & msk ) {
      cnt++;
      a <<= 1;
    }
    a &= msk - 1;
    a |= msk;
    while ( cnt-- ) a >>= 1;
    return a;
  }
  static vector<Cplx> FFT(vector<Cplx> v, int dir = 1) {
    Cplx wm, w, u, t;
    int n = v.size();
    vector<Cplx> V(n);
    for (int k = 0, a = 0; k < n; ++k, a = rev_incr(a, n))
      V[a] = v[k] / ld(dir > 0 ? 1 : n);
    for (int m = 2; m <= n; m <<= 1) {
      wm = polar( (ld)1, dir * 2 * PI / m );
      for (int k = 0; k < n; k += m) {
        w = 1;
        for (int j = 0; j < m / 2; ++j, w *= wm) {
          u = V[k + j];
          t = w * V[k + j + m / 2];
          V[k + j] = u + t;
          V[k + j + m / 2] = u - t;
        }
      }
    }
    return V;
  }
  static void convolution(const vector<int>& a, const vector<int>& b, vector<int>& c) {
    int sz = a.size() + b.size() - 1;
    int n  = 1 << int(ceil(log2(sz)));
    vector<Cplx> av(n, 0), bv(n, 0), cv;
    for (int i = 0; i < a.size(); i++) av[i] = a[i];
    for (int i = 0; i < b.size(); i++) bv[i] = b[i];
    cv = FFT(bv);
    bv = FFT(av);
    for (int i = 0; i < n; i++) av[i] = bv[i] * cv[i];
    cv = FFT(av, -1);
    c.resize(n);
    ll carry = 0;
    for (int i = 0; i < n; i++) {
      ll t = ll(cv[i].real() + 0.5) + carry;
      carry = t / FBASE;
      c[i] = t % FBASE;
    }
  }
  BigInt mul_simple(const BigInt &v) const {
    BigInt res;
    res.sgn = sgn * v.sgn;
    res.a.resize(a.size() + v.a.size());
    for (int i = 0; i < a.size(); i++) if (a[i])
        for (int j = 0, carry = 0; j < v.a.size() || carry; j++) {
          ll cur = res.a[i + j] + (ll) a[i] * (j < v.a.size() ? v.a[j] : 0) + carry;
          carry = (int) (cur / BASE);
          res.a[i + j] = (int) (cur % BASE);
        }
    res.trim();
    return res;
  }
  BigInt mul_fft(const BigInt& v) const {
    BigInt res;
    convolution(convert_base(a, DIG, FDIG), convert_base(v.a, DIG, FDIG), res.a);
    res.a = convert_base(res.a, FDIG, DIG);
    res.trim();
    return res;
  }
  void operator*=(const BigInt &v) {
    *this = *this * v;
  }
  BigInt operator*(const BigInt &v) const {
    if (1LL * a.size() * v.a.size() <= 1000111) return mul_simple(v);
    return mul_fft(v);
  }

  BigInt abs() const {
    BigInt res = *this;
    res.sgn *= res.sgn;
    return res;
  }
  void trim() {
    while (!a.empty() && !a.back()) a.pop_back();
  }
  bool zero() const {
    return a.empty() || (a.size() == 1 && !a[0]);
  }
  friend BigInt gcd(const BigInt &a, const BigInt &b) {
    return b.zero() ? a : gcd(b, a % b);
  }
};
const LL INF=2e18;
typedef pair<int,int> mp;
int k;
LL n;
LL f[1001][1001];
LL mul(LL A,LL B){
    if(A==0||B==0) return 0;
    return (A>=INF/B? INF:A*B);
}
LL add(LL A,LL B){
    return min(INF,A+B);
}
void print(__int128_t num){
    if(!num) return ;
    print(num/10);
    cout<<char('0'+num%10);
}
LL calc(vector<int> cnt,vector<int> sum){
    LL rest=0;
    int tmp=45;
    rb(i,1,tmp){
        // = (10^k-1)*i
        __int128_t val=1;
        rb(j,1,k) val*=10;
        val--;
        val*=i;
        LL dp[2][45*8];
        memset(dp,0,sizeof(dp));
        int now,nex;
        now=0,nex=1;
        dp[now][0]=1;
        int z=0;
        while (val){
            memset(dp[nex],0,sizeof(dp[nex]));
            rb(j,0,45*8-1){
                if(dp[now][j]){
                    rb(l,0,1e9){
                        if(z>=k&&l) break;
                        if(z<k) check_max(l,sum[z]);
                        if(z<k&&l-sum[z]>cnt[z]*8) break;
                        if((j+l)%10!=val%10) continue;
                        if(z>=k){
                            dp[nex][j/10]=add(dp[nex][j/10],dp[now][j]);
                        }
                        else{
                            dp[nex][(j+l)/10]=add(dp[nex][(j+l)/10],mul(dp[now][j],f[cnt[z]][l-sum[z]]));
                        }
                    }
                }
            }
            val/=10;
            swap(now,nex);
            ++z;
        }
        rest=add(rest,dp[now][0]);
    }
    return rest;
}
LL calc_z(int len){
    LL rest=0;
    rb(i,1,8){
        vector<int> c(k,len/k),sum(k,0);
        rep(i,len%k) c[i]++;
        c[(len-1)%k]--;
        sum[(len-1)%k]=i;
        rest=add(rest,calc(c,sum));
    }
    return rest;
}
int main(){
    cin>>k>>n;
    int len=1;
    f[0][0]=1;
    rb(i,0,999){
        rb(j,0,1000){
            rb(k,0,8){
                if(k+j<=1000){
                    f[i+1][j+k]+=f[i][j];
                    check_min(f[i+1][j+k],INF);
                }
            }
        }
    }
    while (true){
        auto tmp=calc_z(len);
        if(tmp>=n) break;
        n-=tmp;
        ++len;
    }
    vector<int> num;
    int cnt[18];
    fill(cnt,cnt+k,len/k);
    rep(j,len%k) cnt[j]++;
    vector<int> sum(k,0);
    // cout<<len<<endl;
    rl(i,len-1,0){
        cnt[i%k]--;
        vector<int> c(k,0);
        rep(j,k) c[j]=cnt[j];
        rb(j,(i==len-1? 1:0),8){
            sum[i%k]+=j;
            auto tmp=calc(c,sum);
            // cout<<i<<":"<<tmp<<' '<<n<<' '<<j<<endl;
            if(tmp>=n){
                // cout<<j<<" "<<n<<" "<<tmp<<endl;
                num.push_back(j);
                break;
            }
            n-=tmp;
            sum[i%k]-=j;
        }
    }
    BigInt rest=0;
    for(auto it:num) rest*=10,rest+=it;
    BigInt B=1;
    rb(i,1,k) B*=10;
    B-=1;
    cout<<rest/B<<endl;
    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 14ms
memory: 11396kb

input:

1 1

output:

2

result:

ok answer is '2'

Test #2:

score: 0
Accepted
time: 14ms
memory: 11576kb

input:

1 8

output:

9

result:

ok answer is '9'

Test #3:

score: 0
Accepted
time: 14ms
memory: 11388kb

input:

1 9

output:

12

result:

ok answer is '12'

Test #4:

score: 0
Accepted
time: 11ms
memory: 11400kb

input:

1 10

output:

13

result:

ok answer is '13'

Test #5:

score: 0
Accepted
time: 24ms
memory: 11580kb

input:

5 1

output:

11112

result:

ok answer is '11112'

Test #6:

score: 0
Accepted
time: 25ms
memory: 11392kb

input:

5 84

output:

11235

result:

ok answer is '11235'

Test #7:

score: 0
Accepted
time: 18ms
memory: 11396kb

input:

5 668

output:

12345

result:

ok answer is '12345'

Test #8:

score: 0
Accepted
time: 27ms
memory: 11400kb

input:

5 733942

output:

2281488

result:

ok answer is '2281488'

Test #9:

score: 0
Accepted
time: 127ms
memory: 11580kb

input:

18 528599760553218747

output:

30725517742188427234

result:

ok answer is '30725517742188427234'

Test #10:

score: 0
Accepted
time: 137ms
memory: 11396kb

input:

18 964828716126767591

output:

55758681752658348563

result:

ok answer is '55758681752658348563'

Test #11:

score: 0
Accepted
time: 132ms
memory: 11368kb

input:

18 401057671700316435

output:

22687686284122211545

result:

ok answer is '22687686284122211545'

Test #12:

score: 0
Accepted
time: 149ms
memory: 11452kb

input:

18 837286627273865280

output:

48255733668453323265

result:

ok answer is '48255733668453323265'

Test #13:

score: 0
Accepted
time: 138ms
memory: 11388kb

input:

18 273515582847414124

output:

15116382182883344554

result:

ok answer is '15116382182883344554'

Test #14:

score: 0
Accepted
time: 134ms
memory: 11584kb

input:

18 55923968082999579

output:

2876461768512185545

result:

ok answer is '2876461768512185545'

Test #15:

score: 0
Accepted
time: 56ms
memory: 11452kb

input:

8 715524960511324231

output:

12022650248772112989

result:

ok answer is '12022650248772112989'

Test #16:

score: 0
Accepted
time: 116ms
memory: 11500kb

input:

16 151753916084873076

output:

6182363727541142425

result:

ok answer is '6182363727541142425'

Test #17:

score: 0
Accepted
time: 37ms
memory: 11444kb

input:

2 587982875953389216

output:

4754915500630529532

result:

ok answer is '4754915500630529532'

Test #18:

score: 0
Accepted
time: 65ms
memory: 11580kb

input:

10 24211831526938061

output:

410770411555582497

result:

ok answer is '410770411555582497'

Test #19:

score: 0
Accepted
time: 139ms
memory: 11584kb

input:

18 460440787100486905

output:

26131416714411853682

result:

ok answer is '26131416714411853682'

Test #20:

score: 0
Accepted
time: 64ms
memory: 11364kb

input:

8 896669742674035749

output:

14750223579258782248

result:

ok answer is '14750223579258782248'

Test #21:

score: 0
Accepted
time: 87ms
memory: 11496kb

input:

12 556270735102360402

output:

13827553636696643430

result:

ok answer is '13827553636696643430'

Test #22:

score: 0
Accepted
time: 31ms
memory: 11460kb

input:

2 992499694970876542

output:

8147123087598806742

result:

ok answer is '8147123087598806742'

Test #23:

score: 0
Accepted
time: 61ms
memory: 11584kb

input:

9 191349424180689911

output:

3224103375245122149

result:

ok answer is '3224103375245122149'

Test #24:

score: 0
Accepted
time: 12ms
memory: 11404kb

input:

1 1000000000000000000

output:

7317596822929805779

result:

ok answer is '7317596822929805779'

Test #25:

score: 0
Accepted
time: 32ms
memory: 11448kb

input:

2 1000000000000000000

output:

8207298656583156714

result:

ok answer is '8207298656583156714'

Test #26:

score: 0
Accepted
time: 35ms
memory: 11460kb

input:

3 1000000000000000000

output:

10124840976332612776

result:

ok answer is '10124840976332612776'

Test #27:

score: 0
Accepted
time: 45ms
memory: 11444kb

input:

4 1000000000000000000

output:

11134918859204347753

result:

ok answer is '11134918859204347753'

Test #28:

score: 0
Accepted
time: 47ms
memory: 11444kb

input:

5 1000000000000000000

output:

12248384925950595769

result:

ok answer is '12248384925950595769'

Test #29:

score: 0
Accepted
time: 56ms
memory: 11404kb

input:

6 1000000000000000000

output:

13481441167144812720

result:

ok answer is '13481441167144812720'

Test #30:

score: 0
Accepted
time: 59ms
memory: 11452kb

input:

7 1000000000000000000

output:

14851839567286627600

result:

ok answer is '14851839567286627600'

Test #31:

score: 0
Accepted
time: 56ms
memory: 11580kb

input:

8 1000000000000000000

output:

16400312227388843586

result:

ok answer is '16400312227388843586'

Test #32:

score: 0
Accepted
time: 63ms
memory: 11492kb

input:

9 1000000000000000000

output:

18070802619848417970

result:

ok answer is '18070802619848417970'

Test #33:

score: 0
Accepted
time: 69ms
memory: 11400kb

input:

10 1000000000000000000

output:

18876263506622668979

result:

ok answer is '18876263506622668979'

Test #34:

score: 0
Accepted
time: 80ms
memory: 11444kb

input:

11 1000000000000000000

output:

22516357784746378893

result:

ok answer is '22516357784746378893'

Test #35:

score: 0
Accepted
time: 85ms
memory: 11392kb

input:

12 1000000000000000000

output:

25606071173776613626

result:

ok answer is '25606071173776613626'

Test #36:

score: 0
Accepted
time: 90ms
memory: 11496kb

input:

13 1000000000000000000

output:

30153652575287329992

result:

ok answer is '30153652575287329992'

Test #37:

score: 0
Accepted
time: 93ms
memory: 11444kb

input:

14 1000000000000000000

output:

34032144146113465692

result:

ok answer is '34032144146113465692'

Test #38:

score: 0
Accepted
time: 110ms
memory: 11392kb

input:

15 1000000000000000000

output:

38476235652741893950

result:

ok answer is '38476235652741893950'

Test #39:

score: 0
Accepted
time: 113ms
memory: 11448kb

input:

16 1000000000000000000

output:

44453843638835448269

result:

ok answer is '44453843638835448269'

Test #40:

score: 0
Accepted
time: 122ms
memory: 11392kb

input:

17 1000000000000000000

output:

51178357488582512218

result:

ok answer is '51178357488582512218'

Test #41:

score: 0
Accepted
time: 130ms
memory: 11388kb

input:

18 1000000000000000000

output:

57644143667246653868

result:

ok answer is '57644143667246653868'

Test #42:

score: 0
Accepted
time: 78ms
memory: 11424kb

input:

11 169906399332236675

output:

3542071158723189134

result:

ok answer is '3542071158723189134'

Test #43:

score: 0
Accepted
time: 74ms
memory: 11448kb

input:

10 836507396055528616

output:

15844261021999264957

result:

ok answer is '15844261021999264957'

Test #44:

score: 0
Accepted
time: 133ms
memory: 11580kb

input:

18 271736347334110166

output:

14838142784382116438

result:

ok answer is '14838142784382116438'

Test #45:

score: 0
Accepted
time: 89ms
memory: 11420kb

input:

13 705965302907659012

output:

20780554485617714682

result:

ok answer is '20780554485617714682'

Test #46:

score: 0
Accepted
time: 127ms
memory: 11500kb

input:

17 141194262776175153

output:

6535463816612312328

result:

ok answer is '6535463816612312328'

Test #47:

score: 0
Accepted
time: 80ms
memory: 11404kb

input:

12 575423218349724000

output:

14318523724188758677

result:

ok answer is '14318523724188758677'

Test #48:

score: 0
Accepted
time: 71ms
memory: 11404kb

input:

11 10652178218240141

output:

201716847375538682

result:

ok answer is '201716847375538682'

Test #49:

score: 0
Accepted
time: 105ms
memory: 11500kb

input:

15 677253166351597490

output:

25718425137845667325

result:

ok answer is '25718425137845667325'

Test #50:

score: 0
Accepted
time: 99ms
memory: 11448kb

input:

14 112482121925146336

output:

3478827471866842353

result:

ok answer is '3478827471866842353'

Test #51:

score: 0
Accepted
time: 85ms
memory: 11460kb

input:

13 138182159835368774

output:

3736504553128889177

result:

ok answer is '3736504553128889177'

Test #52:

score: 0
Accepted
time: 125ms
memory: 11420kb

input:

17 572411115408917620

output:

28263577418567266116

result:

ok answer is '28263577418567266116'

Test #53:

score: 0
Accepted
time: 111ms
memory: 11444kb

input:

16 7640070982466466

output:

275752565647555878

result:

ok answer is '275752565647555878'

Test #54:

score: 0
Accepted
time: 112ms
memory: 11448kb

input:

15 441869026556015312

output:

16212131234378684940

result:

ok answer is '16212131234378684940'

Test #55:

score: 0
Accepted
time: 93ms
memory: 11400kb

input:

14 876097982129564158

output:

30138111462733879719

result:

ok answer is '30138111462733879719'

Test #56:

score: 0
Accepted
time: 134ms
memory: 11576kb

input:

18 543698978852856099

output:

31531851816668641477

result:

ok answer is '31531851816668641477'

Test #57:

score: 0
Accepted
time: 124ms
memory: 11492kb

input:

17 977927934426404945

output:

50224732558555875933

result:

ok answer is '50224732558555875933'

Test #58:

score: 0
Accepted
time: 123ms
memory: 11448kb

input:

16 413156889999953790

output:

17247527871564162333

result:

ok answer is '17247527871564162333'

Test #59:

score: 0
Accepted
time: 112ms
memory: 11420kb

input:

15 847385845573502637

output:

32858466436756182939

result:

ok answer is '32858466436756182939'

Test #60:

score: 0
Accepted
time: 68ms
memory: 11580kb

input:

10 282614801147051482

output:

5234025743251842898

result:

ok answer is '5234025743251842898'

Test #61:

score: 0
Accepted
time: 103ms
memory: 11452kb

input:

15 973760833528793663

output:

37522313475261748199

result:

ok answer is '37522313475261748199'

Test #62:

score: 0
Accepted
time: 78ms
memory: 11420kb

input:

10 408989789102342508

output:

7507683644212199226

result:

ok answer is '7507683644212199226'

Test #63:

score: 0
Accepted
time: 137ms
memory: 11396kb

input:

18 843218748970858650

output:

48517453136216784320

result:

ok answer is '48517453136216784320'

Test #64:

score: 0
Accepted
time: 128ms
memory: 11388kb

input:

17 278447704544407496

output:

13445647446417261863

result:

ok answer is '13445647446417261863'

Test #65:

score: 0
Accepted
time: 120ms
memory: 11400kb

input:

16 712676664412923638

output:

31626684778484371838

result:

ok answer is '31626684778484371838'

Test #66:

score: 0
Accepted
time: 77ms
memory: 11448kb

input:

11 147905615691505187

output:

3115037238176298995

result:

ok answer is '3115037238176298995'

Test #67:

score: 0
Accepted
time: 96ms
memory: 11452kb

input:

14 814506608119829833

output:

27141557811571426774

result:

ok answer is '27141557811571426774'

Test #68:

score: 0
Accepted
time: 187ms
memory: 11388kb

input:

18 249735567988345974

output:

13745718855311428535

result:

ok answer is '13745718855311428535'

Test #69:

score: 0
Accepted
time: 150ms
memory: 11448kb

input:

17 683964523561894820

output:

34462588212244874220

result:

ok answer is '34462588212244874220'

Test #70:

score: 0
Accepted
time: 125ms
memory: 11448kb

input:

12 119193479135443666

output:

2777183132661531726

result:

ok answer is '2777183132661531726'

Test #71:

score: 0
Accepted
time: 133ms
memory: 11424kb

input:

18 577967474662410047

output:

33372657423746582198

result:

ok answer is '33372657423746582198'